UBRISA

View Item 
  •   Ubrisa Home
  • Okavango Research Institute (ORI)
  • Research articles (ORI)
  • View Item
  •   Ubrisa Home
  • Okavango Research Institute (ORI)
  • Research articles (ORI)
  • View Item
    • Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies

    Thumbnail
    View/Open
    Ringrose_Importance_of_Nitrogen_2003.pdf (1.973Mb)
    Date
    2003
    Author
    Aranibar, J.N.
    Anderson, I.C.
    Ringrose, S.
    Macko, S.A.
    Publisher
    Elsvier, www.elsevier.com
    Link
    http://www.sciencedirect.com/science/article/pii/S0140196302910943
    Type
    Published Article
    Metadata
    Show full item record
    Abstract
    Cyanobacterial soil crusts may be important in arid and semi-arid ecosystems because of their ability to fix atmospheric nitrogen (N2). These crusts are very sensitive to trampling by animals, and their destruction can decrease ecosystem N inputs, affecting the productivity of the region. The objective of this study was to quantify the nitrogen-fixing activity in soil crusts during the wet season in southern African ecosystems using in situ acetylene reduction assays. The average acetylene reduction rates for each site ranged from 88 to 535 nmol m-2 h-1, were highly variable, and were lower than previously reported for other arid areas. All soil samples showed acetylene reduction activity; however, soils with crusts supported higher rates than did "non-crusty" soils under litter, moss, or sand. High values of 15N natural abundance (delta15N) indicated that processes other than N fixation were more important in the crusts than N fixation. For example, coupled and ammonia volatilization or atmospheric deposition of 15N-enriched nitrate or ammonium may have caused shifts in delta15N within the soil crusts. The estimated annual N fixation rates ranged from 8 to 44 g N ha-1 year-1, orders of magnitude lower than values estimated in other studies. The anomalous wet conditions experienced during the year of the study may have increased the temporal availability of soil mineral N and decreased N fixation rates. However, the presence of N fixation activity in all crusts analysed and their ability to survive at high temperature and after long dry periods may provide ecosystem resilience, facilitating ecosystem recovery after severe droughts.
    URI
    http://hdl.handle.net/10311/983
    Collections
    • Research articles (ORI) [270]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of UBRISA > Communities & Collections > By Issue Date > Authors > Titles > SubjectsThis Collection > By Issue Date > Authors > Titles > Subjects

    My Account

    > Login > Register

    Statistics

    > Most Popular Items > Statistics by Country > Most Popular Authors