UBRISA

View Item 
  •   Ubrisa Home
  • Faculty of Science
  • Physics
  • Research articles (Dept of Physics)
  • View Item
  •   Ubrisa Home
  • Faculty of Science
  • Physics
  • Research articles (Dept of Physics)
  • View Item
    • Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A new method of quantifying aerosol concentrations in atmosphere

    Thumbnail
    View/Open
    MadhavaRao_MAP_2014.pdf (1.643Mb)
    Date
    2014-04
    Author
    Rao, Madhava K. S.
    Verma, T. S.
    Chimidza, S.
    John, Shibu K.
    Publisher
    Springer Nature Switzerland AG. Part of Springer Nature, https://www.springer.com/journal/703
    Link
    https://link.springer.com/content/pdf/10.1007/s00703-013-0304-2.pdf
    Type
    Published Article
    Metadata
    Show full item record
    Abstract
    Africa is one of the sources of biomass burning emissions. It is estimated that about 6 million tons of fuel per day is consumed in the southern hemisphere. Biomass burning has an important contribution on aerosol particle concentrations in the atmosphere. Efforts have been made to conduct research in Gaborone to monitor the concentration of atmospheric aerosol particles. These studies were mainly confined to measurement of concentration of aerosol particles and establishing a relation with determinants such as carbon dioxide concentration, biomass burning, and precipitation among others. However, very little seems to have been done in relating the empirical data to levels of aerosol concentrations through a mathematical model. In this paper an objective criterion of classifying levels of aerosol concentrations in terms of their severity is provided. A mathematical model for severity levels is built. Furthermore, two indices, namely, an index of dispersion when applied to the observed annual data indicated that intensity of atmospheric aerosol are on increase in the city of Gaborone, Botswana, and an index of drift which establishes that aerosol severity states showed larger drift during the year 2006–2007 than in the year 2007–2008.
    URI
    http://hdl.handle.net/10311/2248
    Collections
    • Research articles (Dept of Physics) [85]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of UBRISA > Communities & Collections > By Issue Date > Authors > Titles > SubjectsThis Collection > By Issue Date > Authors > Titles > Subjects

    My Account

    > Login > Register

    Statistics

    > Most Popular Items > Statistics by Country > Most Popular Authors