Extensions of the Lusin's Theorem, the Severini-Egorov's Theorem and the Riesz Subsequence Theorems
Date
2016-10-14Author
Robdera, Mangatiana A.
Publisher
ScienceDomain International; www.sciencedomain.orgRights
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Rights holder
RobderaType
Published ArticleMetadata
Show full item recordAbstract
We give extensions of the Lusin’s Theorem, the Severini-Egorov’s Theorem, and the Riesz Subsequence Theorems to the setting of a non-additive vector valued set functions and sequences of functions taking values in general metric spaces.
Collections
Related items
Showing items related by title, author, creator and subject.
-
On size function topology and fixed point theorems
Robdera, Mangatiana A. (International Scientific Publications and Consulting Services, http://www.ispacs.com/about.php, 2017-06)In this paper, we introduce and study a metric-like (non-necessarily metric) topology that is weaker than the original topology of a given topological space. The results are used to provide more useful and more general ... -
On the differentiability of vector valued additive set functions
Robdera, Mangatiana A.; Kagiso, Dintle (Scientific Research, http://www.scirp.org, 2013-11)The Lebesgue-Nikodým Theorem states that for a Lebesgue measure λ:Σ〖⊂2〗^Ω→[0,∞) an additive set function F:Σ→R which is λ-absolutely continuous is the integral of a Lebegsue integrable a measurable function ... -
Fundamental Theorem of Calculus in Topological Vector Spaces
Robdera, M. A.; Kagiso, D. N. (Journal of Mathematics Extension, 2017-10)We extend the notions of integration and differentiation to cover the class of functions taking values in topological vector spaces. We give versions of the Lebesgue-Nikodym Theorem and the Fundamental Theorem of Calculus ...