Show simple item record

dc.contributor.authorVasudeva, R.
dc.contributor.authorDivanji, G.
dc.date.accessioned2013-04-05T13:27:33Z
dc.date.available2013-04-05T13:27:33Z
dc.date.issued2006
dc.identifier.citationVasudeva, R. and Divanji, G. (2006), On almost sure behavior of stable subordinators over rapidly increasing sequences, Theory of Probability and Its Applications, Vol. 50, No. 4, pp. 718-722en_US
dc.identifier.issn1095-7219
dc.identifier.urihttp://hdl.handle.net/10311/1135
dc.description.abstractLet (X(t), t ≥ (0) with X(0) = 0 be a stable subordinator with index 0 < α < 1 and let (tk) be an increasing sequence such that tk+1/tk → ∞ as k → ∞. Let (at) be a positive nondecreasing function of t such that a(t)/t 1. Define Y (t) = X(t + a(t)) − X(t) and Z(t) = X(t) − X(t − a(t)), t > 0. We obtain law-of-the-iterated-logarithm results for (X(tk)), (Y (tk)) and Z(tk), properly normalized.en_US
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematics, http://epubs.siam.orgen_US
dc.subjectLaw of iterated logarithmen_US
dc.subjectSubsequencesen_US
dc.subjectStable subordinatorsen_US
dc.subjectAlmost sure boundsen_US
dc.subject.lcshLogarithmsen_US
dc.titleOn almost sure behavior of stable subordinators over rapidly increasing sequencesen_US
dc.typePublished Articleen_US
dc.linkhttp://dx.doi.org/10.1137/S0040585X97982128en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record