COUPLED BUCKLING DESIGN OF STEEL LACED COLUMNS
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A new design method developed by the authors that gives an opportunity to account for the interaction of different
modes of buckling is presented. Eurocode 3 model is used as the reference model. In the reference maodel, an
equivalent geometric imperfection comprising of an initial bow being equal to the length divided by 500 is used.
The inodel is based on the design criterion referred to the individual chord componenis. It allows (o avoid the
application of a complicated procedure based on an explicitly given imperfection parameter. It is achieved by a
treatment of the chord local buckling mode between lacing conneciions in the sume way as the plate buckling af
chord sectional elements. The buckling design of the compound member can therefore be carvied out in the same
way as for a single element provided that the shear stiffness of lacing members is properly taken care of.
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1 INTRODUCTION

Strucrural compression elements. such as columns
supporting civil and mining engineering structures.
are frequently made of several components (chords)
put apart and tied up with use of plates {battens) or
manufactured profiles (lacing members). Thus the
former are called battened columns while latter —
laced columns. When designing compound columns.
the engineer has to include the interaction of all
possible local and global instability modes. Usually
the effects of local instability of chord sectional
segments and flexural buckling of the column as a
whole are those accounted for in design. The effect
of buckling of individual components is usually
checked separately.
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Example of a laced column in mineral

Fig. 1 shows the example of a steel laced column in
mineral industry. Compound columns support a
transportation pipeline system and they are typical
elements of supporting structures in mining industry.
When designing such columns, the enginecer has to
include the interaction of all possible local and global
instability modes. Usually the effects of local
instability of chord sectional segments and flexural
buckling of the column as a whole are those

accounted for in design. The effect of buckling of
individual components is usvally checked separately.
The recent code ENV 1993-1-1 [1] has introduced a
method that is referred here as to the method of
explicit imperfection parameter (EIP model). Built-
up compression members consisting of two or more
main components connected together at intervals to
form a single compound member are therefore
designed by the incorporation of an equivalent
geometric imperfection. The effect of deformation of
the compound member is taken into account by an
amplification of the first order internal forces and
moments in the main components, internal
connection and any subsidiary components such as
lacings. The method is rather complicated when used
in design offices, especially when structural
components of compound members are subjected to
coupled instability (local and global buckling).

A convenient alternative method to be used for
design of steel compound members is proposed by
the authors, That method called here the method of
implicit imperfection parameter (LIP model) is based
on the concept introduced to the Polish national steel
design code [2]. In the proposed method. the local
buckling of chord sectional walls and the buckling of
chord components between lacing connections are
treated as local modes of failure of compound
members. therefore they are assumed to affect (to
reduce) the cross sectional resistance of the
compound member. The reduced sectional resistance
is then used for the buckling design of compound
member. The compound member is treated as a
member with finite flexural and shear stiffnesses [3].
The shear stffness of the lacings is taken into
account in the evaluation of the compound member
slenderness ratio. The method is rather simple and
allows for design of compound members in the same
way as single component members.

2 EUROCODE’'S METHOD OF EXPLICIT
IMPERFECTION PARAMETER (EIP MODEL)



The method of explicit imperfection parameter is
used in Eurocode 3 for design of compound columns
(laced or battened). An equivalent geometric
imperfection comprising of an initial bow not less
than e,=1/500 is recommended to account for any
deviation of the real member stability model (Fig, 2a)
from the perfect member stability model (Fig. 2b).
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Figure 2: Basic models of compression members: a)
imperfect model, b) perfect model

Referring to Fig. 2a. the differential equilibrium
cquation of the imperfect compound compression
member can be written in the following format:

EI " —Ng(v+1,)" =0 (1)
where the reduced member flexural rigidity:
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and: £ - Young modulus, 7 - cross section moment of
inertia in the plane of initial bow gy Ny - design
value of the member load (member compressive
force). 8\~ shear stiffness of the lacing system (the
shear force required to produce unit shear
deformation), v- displacement of an arbitrary point of
the member longitudinal axis, imitial
displacement due to the member crookedness, and
finally superscripts fV and I/ are the symbols
describing the 4™ and the 2 derivative of the
displacement variables. respectively.
Assuming that the initial displacements constitute the
sinus wave with the maximum coordinate of
eq={/500), the solution of equation (1) can be written
as follows:

V= sin(?’-] (3)

where: v~ second order displacement at the mid-
length of the compound member that vields from a
simple amplification rule:
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Z - coordinate measured along the member length,
Nerrea- Timoshenko critical load of the perfect
compound member (flexural buckling load taking
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into account the effect of finite shear deformations of
the chord lacing system:
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N., - Euler load of the perfect compound member:
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Let us consider in details a laced compression
member with two main components, The effective
slenderness ratio of such a member is given by:
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In equations (8) and (9). A, , /; are the cross sectional
area and the moment of inertia of one chord, /1, - the
distance between the centres of gravity of member
chord sections.

The shear stiffness of the laced column is given by:
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where: /; - length of the diagonal lacing, A, - its cross
sectional area, # - shear stiffness factor depending on
the type of lacing system (for details see Table 1).
The second order moment at the mid-length section
of the compound column yields trom equation (3}):

u
M- = N.\'d"rnnx = AS‘JNL’” “ l)
| Ry
N

The chord force at mid-length of the column should
be determined from:
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According to Eurocode 3. the chord force has to he
checked against the chord buckling resistance as
follows:

- chord nonslender section (class section 1 2 or 3):
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- chord slender section (section of class 4):
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where: ey - shift of the chord effective section
centroidal axis with reference to the axis of nominal
section (cross scction is subjected to uniform
compression and it is at least symmetrical with
respect to the plane parallel to the lacing planes).

Since ey = 0 for bisymmetric chord sections, the
form of equation (14) simplifies in this case 10 that of
equation (13).

Table 1: Shear stiffness factor

Type of lacing system Factor 17
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The buckling resistances of the chord shall be taken
as
- characreristic value:

Now =X Npn (15)
- design value:
Nopoi =2 Npm (16)

The characteristic compression resistances of the
¢cross section are given by
- for a chord nonslender section:

Niep=Af, (17)
- for a chord slender section:
N_r--.R = ﬂ.\Ajfy (18)
and the design compression resistance
N o
Ny =—28 (19)
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where: fiy, = Az.4/ Ay - effective area factor of class 4
section. £, - nominal value of the steel yield stress,
v - partial safety factor for resistance.

The effective cross section area is calculated as the
area composed of walls plate segment effective
widths times the nominal thickness of the wall, The
effective width of the individual plate segment is
calculated from the following equation

by = pb (20)

where: p - the local buckling reduction factor
obrained as follows

- when 250.673 p=1 (21a)
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The relative plate slenderness ratio is given by

T . M. [ =: J (22)

T e

where: k, - local buckling factor that is equal to 4 for
internal sectional plate elements (supported on two
edges) and equal to 0.43 for outstand sectional plate
elements (supported on one edge).

The effective width of outstand plate elements is
measured from the supporting edge while for internal
plate elements is divided by two and each half of the
calculated effective width is measured from each
supporting edge.

The buckling coefficient y is the reduction factor for

the buckling mode associated with flexural
deformations parallel to the lacing planes
1
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where: @ - imperfection
dimensionless slenderness.

parameter, 4 -

In case of chords made of rolled sections. the

imperfection parameter a shall be taken as follows

- for standard universal beam [-sections for which
hib> 1.2: a=0.34,

- for standard universal column I-sections for
which firb=< 1.2 and also for |-sections: & =049,
For the design of chord sections. the calculation of
the reduction factor y=y; is based on the

dimensionless slenderness of the chord Z This

slenderness ratio should be determined in the plane
of lacing system, for the buckling length equal to the
system length a hetween lacing connections:

- for a chord nonslender section:
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- for a chord slender section:
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where the chord slenderness:
A (26)
iy

and the slenderness ratio at first yielding
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The design moment resistance of the cross section in
equation (12) can be expressed as follows
Mﬂ',R
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where the characteristic moment resistances

M (28)
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- for a chord nonslender section:

My x =Wy uf, (29)
- for a chord slender section:

My = L (3

and: W, - elastic sectional modulus of the nominal
cross section in the plane parallel to lacing system,
Wi - elastic sectional modulus of the effective cross
section in the same plane.

The lacing forces adjacent to the end panels should
be derived from the internal shear force Vi taken as:

aM, aNge N g (31)
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The force N, in the diagonal lacing of the end panel
is given by:

N, = Vida = Ny L (32)
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The size of the diagonal lacing shall satisty the
following design criterion

LA (33)
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The buckling resistance of the diagonal lacing Ny, g
is determined from equation (16), where the cross
sectional arca Ay is used and the buckling coefficient
¥=xa is calculated according to equation (23) with

use of the slenderness ratio 4, . In case of a single

angle lacing of & nonslender section. the
dimensionless slendemess takes the form

A, = if. (34)
A

where the slenderess of diagonal lacing
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The imperfection parameter ¢ for an angle lacing
shell be taken as 0.49.

Using the design procedure recommended by
Eurocode 3, one can calculate the maximum design
load of a laced column for given chord section.
lacing section. column length 7 and distance between
chords /.. as a function of the chord system length @
= Iy, where ny=2 is the integer number. For a chord
nonslender section the maximum design load of the
compound column yields from equation (13), after
the substitution of equations (12) and (11)

Ny =26Ng, +26,=0 (36)
where
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Solving the quadratic algebraic equation (37) yields
N =c—Vc:—2q, (38)

For chord slender monosymmetric sections, the
caleulations are more laborious since the maximum
load has to be determined from the higher order
algebraic equation [sce equation (14)] and one has o
resort to iterative methods.

Ta evaluate the maximum load on the laced member
with reference to the different panel length (the
distance between the lacing-to-chord connections),
the following equation is recommended 10 ensure a
technological ease of the fabrication of lacing
connections

[ho'] > ( M s
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3 PROPOSED METHOD OF IMPLICIT
IMPERFECTION  PARAMETER (EIP
MODEL)

The proposed design procedure is based on the
observation that the compound member is subjected
to different buckling modes, which may be classified
as local and global, The local modes are referred to
instability of chord sectional walls (Fig. 3a) or to
instability of chord between the lacing-to-chord
joints (Fig. 3b). These modes do not produce
postbuckling bending deflections of the compound
member treated as a whole. A global mode is given
in Fig. 3c. where the member is treated as a
compound member with finite values of the flexural
stiffness and the shear stiffness. Tt is obvious that in
real design situations there is a coupling of local and
global buckling modss, and that a separate treatment
of these modes can lead to an unsafe design.
Authors’ proposal is therefore based on the treatment
of all local buckling modes in the same way as that



related to plate buckling of the sectional walls in
Eurocode 3.
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Figure 3: Possible buckling modes of a compound
member: a) local buckling of a chord section wall. b)
local buckling of the chord, c) global buckling of the
compound member

Referring o equations (14) for a slender section
chord. the compression resistance of the compound
column section can be accounted for all local
buckling modes of failure

A"w-.h‘ﬂ' = 2/}} N_.'?>.Rd = 2ﬂ) Z,(N.v.ﬂd (40]

where the coefficient f; can be derived from the

quadratic algebraic equation as follows

- for a slender section chord of monosymmetric
section (ey= 0)

- for a slender section chord of bisymmetric section
(ex=())

B =1 (41b)
and the coefficients k. &, are defined as
364, M.
Ry i k= ;’“. (42)
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Other variables have the same meaning as in
equation (14).

The design load on a compound column can
therefore be checked against the buckling resistance
as follows

2y <1 (43)
N pa
where the buckling resistance of the compound
column

Notia = LN e s (44)

In equation (44). ., is the buckling coefficient y to be
calculated according (23) for the slenderness ratio
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and 7, is the compound column slenderness ratio
derived from Timoshenko theory of ¢lastic stability
of perfect columns of finite flexural and shear
stiffnesses,
Referring to the differential equilibrium equation (1),
puiting 1,=0 and solving for a basic case of simply
supported member, one can get the following
relationship
s EA

A= A vt = (46)
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For the laced column consisting of two main
compoenents
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where v - shear stiffness factor from Table 1 and /-
slenderness of the chords according to (7).
The compound column critical load in presence of
the finite shear stiffness of lacing system can be
determined as

e (48)
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The lacing system can be checked according to the
procedure  given by Eurocode 3. The force
transmitted by the lacing system and given by (32} is
to be checked against the buckling resistance of the
diagonal lacing according to (33).

The proposed design criterion represents the
buckling of the column as a whole. It is obvious that
the compound column section is a quasi-closed one.
The method of implicit imperfection parameter
requires an introduction of the appropriate
imperfection parameter. The parameter « = 0.21 is
suggested herein since it has been recommended for
hot rolled hollow sections in Eurocode 3.

The proposal developed in this paper has several
advantages:



= The design procedure is simple and treats the
buckling effects in a uniform way. ie. the local
buckling modes are assumed to affect the
compression resistance of the compound member
cross section in the same way as the plate
buckling of sectional wall segments,

- The buckling resistance of the compound member
is the only criterion that needs to be checked
regardless of whether the member chords are
subjected to secondary bending due the shifting
of the centre of gravity in the case of slender
sections or not. The effect of secondary bending
is taken care of by the reduction factor B The
effect of local buckling of sectional walls is taken
care of by the reduction factor £, and finally, the
effect of local buckling of chord members
between the lacing-to-chord connections — by the
reduction factor ;.

- The imperfections are taken into account in an
implicit way. The residual stresses and the initial
crookedness of the chord between the lacing
connections are taken into consideration in the
reduction factor y; while the initial crookedness of
the compound member — in the reduction factor
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4 COMPARATIVE ANALYSIS
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Figure 4: Columns considered for a comparative
analysis

The comparative analysis is carried out for a
compound column consisting of two channel section
chords and laced in two parallel planes (Fig. 4). The
nonslender channel section 432x102 according to
BS4 is selected for chords. Three different column
lengths are considered, namely 3 m. 6 m and 9 m.
Two distances between centroids of chords are
chosen. namely 0.404 and 0.604. The number of
lacing system panels considered for each length of
the column and each distance between the chord
centroids satisfics the technological criteria (39). The
steel grade Fe 360 is assumed according to Eurocode
3. The nominal vield strength is tuken as 5 =235
MPa (¢ = 1) since the maximum thickness of
sectional wall segments is not greater than 40 mm.
The partial safety factor is equal to 1.1,
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Figure 5: Maximum column design loads N, for I =
3Im

The maximum design load Ny, on the compound
column is calculated according to Euracode 3 model
and according to the model of present study. The
results are presented in Fig. 5 for the column of 3 m
in length, Fig. 6 — for the column of 6 m in length
and finally Fig. 7 — for the column of 9 m in length.
The maximum loads corresponding to flexural
buckling of columns in the direction perpendicular to
the lacing system are also drawn in all the figures as
horizontal lines. They are equal to: 3924.5 kN - for
the column of 3 m in length. 35262 kN - for the
column of 6 m in length and 30854 kN - for the
column length of 9 m in length.
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Figure 6: Maximum column design loads Ny, for / =
6.m
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Figure 7: Maximum column design loads Ny fori =
9 i
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Figure 8: Maximum column design loads Vsfor{=3
m

The shear forces Vs corresponding to the design load
Nss are given in Fig. 8 for the column of 3 m in
length, Fig. 9 — for the column of 6 m in length and
finally Fig. 10 — for the column of 9 m in length. The



load corresponding to the 0.01% of the compound
column squash load, conventionally suggested in
some design specifications as the shear force for
design of lacing members [2]. is equal to: 39.2 KN.
This load is much higher than those computed
according to the Eurocode 3 model and the model of
present study.
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Figure 9: Maximum column design loads Vs for
I =6m
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Fig. 10 Maximum column design loads V for /=9m
5 CONCLUSIONS

Two methods for the design procedure of steel
compound laced columns have been considered in
the paper. The first method (a reference method) is
referred here as to the EIP method. This method is
recommended for design by the recent ENV 1993-1-
1 code [1]. The second method is referred here as to
the TIP method and has been developed in the paper.
It is based on a design concept introduced to the
Polish national steel design code (2], The detailed
procedures for two methods have been explained and
programmed in a spreadsheet [ormat of Microsoft
Excel. Comparative analysis has been performed.
From the analysis camied out the following
conclusions can be drawn:

The method developed in the paper constitutes

simple and a handy alternative for design

pracedures recommended by current design
specifications.

- Simplicity of the proposed method does not affect
its accuracy; it is in a very good agreement with 4
more laborious method based on the reference
model proposed in ENV 1993-1-1 [1].

- The proposed method gives the values of the
resistance of compound columns within the range
up to =2% compared with those from the
reference: model; for the short columns, the
results are slightly lower than those from the
Eurocode 3 model while for the long columns —
the resistance tends to be a bit overestimated.

- The flexural buckling mode out of the lacing
planes may govern the design only if a long
column is considered (see Fig. 7); otherwise the
flexural buckling mode in the lacing planes has to
be considered in the design criterion see Figs. 5
and 6).

- The proposed method gives the values of shear
forces for the design of lacing members within
the range up to £2% if compared with those from
the reference model; for the short columns. the
results are placed a bit below those gotten from
the reference model while for the long columns —
the resistance tends to be a bit overestimated.

- The accuracy of the proposed model can be
improved by the introduction of a variable
imperfection factor e .
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