On semi-parallel lightlike hypersurfaces
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Abstract, We study semi-parallel lightlike hypersurfaces of an indefinite
Kenmotsu manifold, tangent to the structure vector field. Some Theo-
rems on parallel and semi-parallel vector field, geodesibility of lightlike

hypersurfaces are ohtained. The geometrical configuration of such light-
like hvpersurfaces is established. We prove that, in totally contact umbil-
ical lightlike hypersurfaces of an indefinite Kenmotsu manifold which has
constant E—hclomcrphic sectional curvature c, tangent to the structure
vector field and such that its distribution is parallel, the parallelism and
semi-parallelism notions are equivalent.
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1. Introduction

A semi-Riemannian manifold is locally symmetric if it satisfies the condition
VR =0, where V 15 the Levi—Ciwvita connection on semi-Riemannian manifold
and R 1z the corresponding curvature tensor. The integrability condifion of
VE =101is - K = 0. Manifolds which satisty the latter condition are called
semi-symmetric and have been classified, in Riemannian case, by Szabo in [14]
and [15].

In the theory of submanifolds of a space form, conditions analogous to local
symmetry and semi-symmetry have been introduced and studied quite inten-
sively. Ferus [8] and others introduced the concept of parallel immersions,
that is, immersions with parallel second fundamental form, and classified such
immersions. On the other hand, Deprez and others introduced and studied the
concept of semi-parallel immersions, that is, immersions such that the curva-
ture tensor annihilates the second fundamental form (for details, see [1,5,6]
and references therein).
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The present paper aims to investigate semi-parallel lightlike hypersurfaces of
indefinite Kenmotsu manifalds.

Az 18 well known, contrary to timehke and spacelike hypersurfaces, the geom-
etry of a lightlike hypersurface is different and rather difficult since the nor-
mal bundle and the tangent bundle have non-zers intersection. To cwercoms
this difficulty, a theorv on the differential geometry of hightlike hypersurfaces
develaped by Duggal and Bejancu |7] introduces a non-degenerate screen dis-
tribution and constructs the corresponding lightlike transversal vector bundle.
Thiz enablez to define an induced linear connection (depending on the screen
distribution, and hence i= not unique in general).

The paper 1z creanized as follows. In Sect. 2, we recall some basic defimitions
and formulas for indefinite Kenmotsu manifolds supported by an example and
lightlike hypersurfaces of semi-Riemannian manifolds. In Sect. 2, theorems
on parallel and sermi-parallel vector field, gecdemibility of hightlike hypersur-
faces of indefimite Kenmotsu manifolds are aobtained. We also study totally
contact umkbilical lightlike hypersurfaces of an indefinite Kenmotsu manifald.
By Theorem 2.6, we establish the geometrical configuration of such lightlike
hypersurfaces, tangent to the structure vector field in Kenmotsu manifolds
which have constant é-holomerphic secticnal curvature o We prove the non-
existence of totally contact umbilical lightlike hypersurfaces, tangent to the
structure vector field, in indefinite Kenmotsu manifold under a certain con-
dition. We show that, in totally contact wmbilical lightlike hypersurfaces of
indefinite Kenmotsu manifolds which have constant Ehhﬂ]c\mnrphlc sectional
curvature ¢, tangent to the structure vector field and such that its distribation
iz parallel, the parallelism and semi-parallelism notions are equivalent {Theo-
remm 3.13). Finally, we discuss the effect of the change of the screen distribution
on different results found.

2. Preliminaries

Let AF be a (20 + 1)-dimensional manifold endowed with an almest contact
structure (& £,7), L.e. @ 15 a tensor field of type (1, 1), £ i a vector field, and
7 15 a 1-form satisfying

F—_I4qet gf) =1 nod=0 and BE=0. i2.1)

Then [5,.'&',77,?} i= called an almost contact metric structure on M if (5.'5,?7}
1z an almeat contact structure cn A and 7 1= a semi-Riemanman metric on M
such that, for any vector field X, ¥ on M [3]

X)) =56X), FEX.V) =X, T) - (X m(T). (2.2)

If, moreover, [ﬁﬁj? = §[¢_X ?}.‘f - a.q(?p_x and ﬁjpf =X - rp[f}f., whers
% is the Levi—Civita connection for the semi-Riemannian metric g, we call 3
an indefinite Kenmotsu manifald [10].



Vol 95 (Z009) O semi-paralle] lightlike hypersur faces i

A plane section o in Tj! T i= called a -section if it is spanned b} W and 2X,
where X is a unit tangent vector field orthogonal to &, Since g0 = a, the
Fesection o is a hnlnmnrph]c F-section and the secticnal curvature of a d-sec-
tion @ ig ealled a o-holomorphic sectional curvaturs (see [4]), [0] and references
therein for more details ). If a Kenmotsu manifold U7 has constant g-halomor-
phic sectional curvature e then, by virtue of the Proposition 12 in [10], the
curvature tensor B of M s given by, for any X, Y, & = TNTAF),

- = -3, N +1 —_ =
RXY)Z =~ (77, 2)X - 5%, ¥} + — (n(XmiZ)¥
— Y m(E)X+7( X 2T ) -7Y, 2 )0 X)e+7(@Y . Z)eX
-7(eX.Z)eY — 25(eX Y )eZ} . (2.3)
A Kenmotau manifold i= a typical example of Ciaj-manifold, with o = -1,

intraduced by Janssens and Vanhecks [3].

Mote that the @-holomorphic sectional curvature of an indefinite Cex f-manifald
does not satisfy, in general, a “Schur Lemma”™ although it holds for co-Eahler
and indefinite Sasakian manifolds (see [4] for details).

An indefinite Kenmotsu manifold which has constant @-hclomeorphic sectional
curvature ¢ will be dencted by 77" A Kenmotsu manifold 7T of constant =
holamaorphic sectional curvature o will be called Kenmotsu space form and
dencted by 3 (). Here " s different from () and this is well specified in
[10] through Propesition 12 and Theorem 13.

Erample 1. We consider the 7-dimensional manifold I = {{ry, zq,..., 27}
BT - xp £ 0}, where © = (74,79, ...,%7) ate the standard coardinates in B7.
The vector fields

a a a a &
=1 =I?_rfl'r1' EE:I?_&':Q' Eg:I?_rfl':n' E'.l:I'.f_aI‘. E-:'__I?_rfl':,:.
i i
= = —I?&—Iﬁ, E‘?=—I?E.

are linearly independent at each point of . Let @ be the semi-Rismannian
mettic defined by Fene) = 0,5 ¥+ 5,47 = L&\ 7 and Flepep) =
LYk = 1,2,3.4.7 Tlem.em) = —1.%¥m = 5.6, That is, the form of the
metrie hesomes

1
§=ﬁ{irf+d:§+d:§+dﬂ—d:f—dzg-I-drf}.

Let 7 be the 1-form defined by (X ) =F(X .e7), for any X = T{TAT).

Lat ¢ be the (1 1) temzar field defimed by dey = —eg, deg = £, Py =

—ey. ey = €3, gy = —eg. geg = 5. gey = 0. Then using the linearity of
o

@ and §, we have Aler) =1, 07X = X +?'||(XJ€7,_[¢X PY) =F(X. V) —

gl X (Y ), for any X, T £ I'[T‘LIJ Thus, for er = &, (@, £,7.7) definss an

almost contast metric structure on M. Let ¥ he the Levi-Civita connection

with respect to the metric 7. Then, we have [e;, 0f] =g, ¥i= 1,2, ... .6 and
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[es.eq] = 0,94 # 5,4, 7 =1.2,... 6 The metric connecticn % of the metric T
is given by

E[vfruzj = Xf[?- EJ + Yﬂ?lx,] - Eﬂxum - f[x- [Flz].]
-5(¥, [X. Z]) +5Z.[X. 7]},

which 1z known as Koszul's formula. Using this formula, the non-vanishing
covariant derivatives are given by

vﬂ L E1 = —E&y vtgeﬂ = —#&, vﬂgEB = —&7, ve.ied = —E&r,
Veser =er. Vo ep=er Vo ep=ey, V. er=en
Weafr = €3, Wa,f7 = €4, Woaf7 = 5,  Wagf7 = €4

Fromn these relations, it follows that the manifold 3T satisfies ﬁﬁj? =
T Y38 — i} )X and V=X — n(X )£ Hence, M i= an indefinite Ken-
motan manifeld.

Let (I, 5F) be a (2n4 1)-dimensional semi-Rismannian manifold with index s,
0 2= 2r41 and let (M, g] be a hypersurface of I, with g = Tiag- M iz sa1d
to be a lightlike hypersurface of 3 if the metric g is of constant rank 2r — 1
and the crthegonal complement TM L of tangent space TM, defined as

TML = U {YpeTpH:EPLXp.YpJ =0, ¥X, eTpM }, (2.4)
pEM

is a distribution of rank 1 on M [7]: TML  TM and then coincides with
the radical distribution RadTM = T 1 TML. A complementary bundle of

TML in TM is a constant rank 27 — 1 non-degenerate distribution over M .
It iz called a screers distribution and is often demoted by SITM ). Existence of
S(T"M} 1= secured provided M is paracompact. Howewver, in general, S{TM )
iz not canenizal (thus it iz not unique) and the lightlike geometry depenids on
ita choice but it is cancnically isomorphic to the vector bundle T (RadT M
[12].

A lightlike hypersarface endowed with & specific screen distribution s denoted
by the triple (M, g, S{T M), AsT M2 lies in the tangent bundle, the following
result has an impaortant role m studying the geometry of a highthks hypersur-
face [7].

Theorem 2.1 (Duggal-Bejancu). Let (M, g. S{TM )} be a bghtldhe hypersurface
of (M. ). Then, there emists a umigue vector bumdle N{TM) of rank 1 over M
such that for any non-zero section B of TML on a coordinate neighborfood
W M, there exisd a umigue section W of N{T M) on l{ satisfying

FN.E)=1 and FN.N)=g(N.W)=0, YW <T(S(TM)u).

Throughout the paper, all manifolds are suppeossd to be paracompact and
amacth. We denote by T(E) the smocth sectiona of the vector bundle E. Alse
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by L and & we denote the erthogonal and nonorthogonal direct sum of two vee-
tar bundles. By Theorem 2.1 we may write down the following decompesitions

TM = 8(TM) L TM?,

2.5
T = TM & N(TM) = S(TM) L (TM* & N(TM)). 9

Let W be the Levi—Civita connecticn on [H,EJ, then bw using the second

decomposition of (2.5) and considering a normalizing pair { £,V } as in The-
orem 2.1, we have Gauss and Weingarten formulas in the form

ﬁx}’:?x}'+hﬂx,}’}, XY e T{TM|u). (2.6)

and Tyl = —ApX4VEV, WXeT(TM|y), VeD(N(TM)), (2.7)

where Wyl , ApX & DITM}) and R(X. Y}, '?_Jf Ve D(W{TM)). ¥ is an

induced symmetric linsar connection on M, V1L is a linear connection on the

vector bundle NV{TAM ), & iz a T(N(TM) }-valued symmetric bilinear form and
Ay 18 the shape cperator of M concerning V.

Equivalently, consider a normalizing pair {£, N} as in Theorern 2.1, Then
(2.6) and (2.7) take the form

TV =Tyl 4+ BXYIN, YX YV eD{TMy (2.8)

and VxlN = —AxX 4+ r(X)NV, 9X = T{TMu). (2.9

where B, Aw. v and ¥V are called the local second fundamental form, the

local shape operator, the transversal differential 1-form and the induced linear
tarsion free connection, respectively, cn T'M), .

It 1= important to mention that the local second fundamental form 5 of M 1=
independent of the choice of screen distribution. In fact, from (2.5} and (2.9},
we obtain B(X. V) =7V x V. E) and 7(X) = FVEN, E).

Let P be the projection morphism of TM on S{TM ) with respect to the
orthogonal decomposition of TA . We have

VxPY = V4 PY + O(X,PY)E, YX.Y eT(TM|y) (210
and VyxE = —ALX — (X)E, ¥X e (TM|y), (2.11)

whera 'F_‘,". Y and A;:.X belong to T{S(TAM) ). O AE. and W* are called the
local second fundamental form, the local shape operator and the induced con-
nection, respectively, on S{T"M). The induced linear connection ¥ is not a
metric connection and we have, for any X, Y = TNT M| ),

(Vxgh¥ Z)=BX.YT)REZ)+ BIX,Z)8)), (2.12)
where # i= a differential 1-form locally defined on A by 8(-) =TV, ).
Alsa, we have the fallowing identities,

g(ALX, PY) = B(X,PY), g(ARX.N)=0, B(X,E)=0. (213)
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Finally, using (2.8) and (2.9), B and R are the curvature tensor felds of 35
and M are related as

TX.Y)Z = R(X.Y)Z + BIX,2)AyY — B(Y. Z)An X
+{(VxB)(Y,Z) — (Vy B)X. Z) + T(X}B(Y, Z)
— H(Y)B(X,Z)} N, (2.14)
where (VxB)(Y.Z) = X.B(Y.Z)— B(WxY.Z) — B(Y.VxZ). (215

Suppose that the distribution S(TM ) 1= parallel with respect to W, that is,
VxFPY e TNS(TM)) for any X, Y « INT M) As ¥V is a torsion-free connec-
tion, it follows that S{T'M) i integrable. Marscver, from (2.10) and {2.12), we
have the following result proved in [7].

THEOREM 2.2 (Dugzal-Bejancu). Let (M, g, S(TM)) be a lightlike hypersur-
face of a semi-Riermannian mangfold (M, g}, Then, the following asserfions are
equsvalent:

(1) S(TM) iz parallel with respect to the induced connection V.
(i) O vonishes ddentically on M.
(i)  Ap wvandshes identically on M.

3. Main results

Lat “-_f,s, £,7,7) be an indefinite Kenmotau manifald and let {Af, g) be a light-
like hyvpersurface, tangent to the structure vector field £ 76 = TM ) of (M, 7).
If E is a local section of TAIL, then by nsing the second equation of (2.2},
one obtains §i¢E, E) = —g(E, ), that is, §leE . E) = 0, and by (24}, ¢F
is tangent to M. Thus (T L) is a distribution oo M of rank 1 such that
HTMYYNTM* = [0}. This enahles us to chocas a screen distribution 5(TM )
such that it contains G(TM L) as a vectar subbundle. If we consider a local
section W of N(TAf), since FlaN. E) = —g(N, 8E) = 0, we deduce that 65
belengs to SIT My On the cther hand, since FleN, V) = 0, we see that the
component of @V with respect to E wvanishes. Thus N < T{S({T M),

From (2.2) and Theorem 2.1, we have G(aV, #5) = 1. Therefore, @(T ML) &
EQN'{TJ-I” {direct sum but not crthogonal ) is a nondegensrate vectar subbun-
dle of S(TM) of rank 2.

If A 1= tangent to the structure vector field £, then, we may choose S{TA) 50
that £ belengs to S(TA). Using this, and since EI:;EEI:I = _[;_"'u',.fl:l =0, there
existz a nondegenerate distribution Dy of rank 2% — 4 on M such that

SITM) = {STML) & S(N(TM))} L Dy L&), (3.1)

where (£} 18 the distribution spanned by £, that is, (£} = Span{£}. It is easy

to check that the distribution Dy is invariant under ¢, Le. SEDI;.J'I = Iy
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Erample 2. Let M be a hypersurface of [E,$,E,ﬂ,§_] (indefinite Kenmotsn
manifold defined in Example 1) given by
Ty = \:‘E(:g + 3},

where (ry, 7a,.... xq) is a local coordinate system for BT, Thus, the tangent
space TM i= spanned by {U; hicycs, where Uy = &, Uh = eg — &3, Uy =
:_1,5[59 + eg) —ey. Uy = ey Uy = eg, Uz = £ and the 1-dimensicnal distribu-
tion TM~ of rank 1 is spanned by E, where E = :_i,gﬂeg + e3) — ey It fallows

that TML — TA. Then M is a 6-dimensional lightlike hypersurface of 7.
Also, the transversal bundle N{TM ) is spanned by N = é{—jjillc'g +egh ey}
"

On the other hand, by using the almost contact structure of 0 and alsa by
taking into account the decompeosition (3.1}, the distributicn Dy i= spanned
by {F,@F }, where F = U3, &F = Uy + Uy and the distributions (£), #(TM L)
and o(WV(TAM )] are spanned, respectively, by £ aF = :i,EllUl — Uy} + Uy and
N = %{—jjil'll' — U4 = U3} Hence, M is a lightlike hypersurface of 1.

v

Moarecwver, from (2.56) and (3.1} we cbtain the decompaositions
TM = {$(TMY) @S(N(TM))} L Dg L (&) L TM*, (3.2)

TM = {HTMY) & S(N(TM))} L Do L {&) L (TM* & N(TM)).
(3.3)

Mow, we consider the distributions on M,
D=TML+ L@ETMY LDy and D' = @(V(TM)).
Then 7 is invariant under & and
TM =(D®D") L. (3.4)

Let us consider the local lightlike vector fields I7 := —3N and 1V := —&E.
Then, from (3.4), any X < I'(TM) is written as

X = RX + QX +q(X)6, QX = u(X)U,

where R and & are the projection morphisms of TM into I and [, respec-
tvely, and « 15 a differential 1-form on M locally defined by wi-) :== g(17 ).

— _a —
Applving @ to X and (2.1} (note that & N = —N), we cbtain &X = &X +
w(X )V, where ¢ iz a tensor field of type (1,1) on M defined by & = GRX
and we also have

X = —X 4 q(X)E+ (X)W, ¥X =T(TM). (3.5)

By using (2.1} we derive g(éX. ¥ = glX. V) — q(X 0¥ — w{Y Ju{X) —
wl(X (Y}, where v is a differential 1-form on M locally defined by wo(:) ==
a7, ). We note that

gl6X,¥) + glX, 6Y) = —u( X)8(Y) — w(Y)8(X). (3.6)
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We have the following useful identities: for any X, ¥ e T{TM ),

Vxé =X - glX)g, (3.7)
B(X,& =10, (2.8)
X, £ = a(X), (3.0)
B(X. Uy = (X, V). (3.10)

Mext, we give a charactenzation on parallel hghtliks hypersufaces of an mndef-
inite Kenmotsu manifold. In fact, it shows that there do not exist mon-totally
gecdesic totally umbilical lightlike hypersurfaces of indefinite Kenmotsu man-
ifold s, tangent to the structure vector fisld £.

If a {Zn + 1)-dimensicnal indsfinite Kenmotsu manifold T has constant

d-holomorphic sectional curvature e, then, by wirtue of Proposition 12 [ID]..
the Ricei tensor Ric and the scalar curvature 7 are given, respectively, by [10]

E=%ﬁn(c—aj+=+1J§—%(n+1j(c+1jn€-ﬂ. (3.11)
T= 24 e -3 —nlet 1)), (3.12)

This means that 7 is s-Einstein. But if M hecomes s space of constant
#-holomaorphic sectional curvature o, that is, a Kenmotsu space form f[c}..
the curvature tensor of Tf[cj has alsa the form given in (2.3) with « constant
which implies, through the Eq. (3.11}, that M{c) s q-Einstein. Since the cosf-
ficients of Fic are constant an M (), by Corollary 9 in [10], 7T is an Finstein
one and consequantly, & 41 =10, that is, « = —1. 50, the Rieel tensor (3.11])
becomes Ric = —2n7F and the scalar curvat ure 1= given by ¥ = —2n(2n 4 1).

Thus, if & Kenmotsu manifold & is a space form, then i is Finstein and
¢ = =1. This means that it is a space of constant curvatre =1, so, locally it
iz Isometric toe the hyperbolic space.

Let M be a lightlike hypersurface of AT, Let us consider the pair § 5, WV} on
i = M {see Theorsm 2.1) and by using (2.14), we obtain

(Vx BIY,Z) — (Vy B)(X,Z) = +(Y)B(X,Z) — (X )B(Y. Z)
+':J4r—l [F(eV, D u(X) - F(aX, D)u(V) — I@aX, ¥Viu(Z) ). (2.13)

The zecond fundamental form k= B & N of M iz said to be parallel if

(Vx )Y, Z)=0, (3.14)
for any X, Y, & € [NTAL). That is,
(WxBHY, 2= —7(X)B(Y.Z). (2.15)

This means that, in general, the parallsham of k doss not imply the parallelizm
of B and vice versa.

Lemuma 3.1. There exist no lightlike hyperswfaces of indefinde Kenmolsu man-
ifelda (F,c £ 1) with £ £ TM and parallel second fundamental form.
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Progf. Suppose ¢ # —1 and second fundamental form iz parallel. Then, if we
take ¥ = F and & = U7 in (311}, we abtain ‘”—1’—1&[1’} = 0. Taking X =17, wa
have o« = —1, which iz a contradiction. O
A lightlike hwvpersurface M is totally geodesic (respectively D' L (£} or
I¥-totally geodesic) if the losal second fundamental form 5 satisfies B{X, V) =
0, far any X, ¥ e I(TM) (respectively X, ¥ e T{D L £p) or T(D¥)).

b}

Lem:miil.ﬂ. Let M be a hightlike kypersurface of an indefinite Kenmotsu man-
tfold M with & & TM . such that ita local second fundomentod form B s
paradlel, If (E) £ 0, then c = —1 if and only f M is D'-totally geadesic.

Progf. Suppeee B iz parallel. Then, VE = 0 on M. Using this, the relation
(313} becomes, for any X, V7, & < TNTM),
+1 _— —
T(X)B(Y, Z) - 7V )B(X, Z) = Z— {@(aY. 2)ulX) - T(BX, Z)u(Y )
=2F(0X. Y)u(Z)}. (3.16)
Taking 1" = E in (3.16), we chtain
1
z%u;x Yl Z) = r(E)B(X, Z). (3.17)
Taking X = Z = U in (317}, we have 381 — ~(E)\B(U.I7) and if ~(E} £ 0,
the equivalence follows, O

Theorem 3.3. Let M be o lightlike hypersurfoce of an indsfinite Kenmotsu
manifold M with &£ 2 TM . IF the second fundamental form b of M 22 parallel
then M iz totally geodesic.

Frogf. Suppese that the second fundamental form & of A 15 parallel. Then
(3.15) 18 satished. Taking £ = £1n (3.15) and using (2.8), we abtain

(VxB)Y.g) =—7(X)B(Y. &) =10 [3.18)

From (2.15) and using (3.7) and (3.8}, the lefi hand side of (3.18) becomes
(VxB)¥£ =-BXY) (3.19)
From the expressions (3.18) and (3.19) we complete the procf. m]

We note that the Theorem 2.3 ari=es when the local s=cond fundamental form
B of M i= alzo parallsl.

A submanifald of a semi-Riemannian manifold with parallel second fundamen-
tal form 18 called a parallel submanifold. 5o, the Theorem 3.3 generates some

lightlike gecmetric aspects am any parallel lightlike hypersurface of an indefi-
nite Kenmotau manifold by using, for instance, the IMuggal-Bejancu Thecorem

[T, Thecrem 2.2, p. 38].
A submanifald M s ssid ta be a tetally umbilizal lightlilke hvperaarfacs of a

semi-Riemannian manifold W if the local second fundamental form B of A
satiafies
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B(X.Y)=pg(X,Y), ¥X.¥ &T(TM) (3.20)

where g iz a smocth functicn on I < M.

If we assume that M = a totally umbilical lightlike hyvpersurface of a semi-
Riemannian manifold 3T, then we have BX.Y) = pglX. V), for any X1 =
[(T°M), which implies, by using ( 3.3), that 0 = B(£, £) = p. Hence M 1= totally
gecdesic. Therefore we have

Proposition #.4. Let (M, g) be a dightldhe hypersurface of an dndefinite Kenmo-
tsu mandfold (M, ) with £ € TM. If M is fotally wmbilical, then M is dotally
geodesic,

It follows from Propesition 2.4 that a Kenmotsu manifold T does not admit
amy non-totally gecdesic, totally umbilical lightlike hvpersurface. From this
point of view, Bejancu |2 considersd the concept of totally contact umbilical
semmi-invariant submanifolds. The notion of totally contact umbilical subman-
ifolds was first defined by Kon [11].

A submanifold M iz s=1d to be totally contact umbilical if its second funda-
mental form & of M satisfies [2)
RIXY ) = {alX. V) —nlX (Y ) H + (X Y, 8 + (Y jR(X. €1, (3.21)

for any X, ¥ < T'(TA), where H is a normal vector field on A (that is
H = AN, A is a smocth function on I © M} The totally contact umbilical
condition (3.21) can be rewritten as,

RX.Y) = B{X,Y)WN = {B (X ,Y) + Ba(X. Y} V.
where By (X,Y) = Ma(X.¥) — 9(X)n(Y)} and Ba(X,¥) = n(X)B(¥Y.€) +
7Y JB(X.8).

If the A =0 {that i= §y = 0], then the lightlike hypersurface A iz said to he
totally contact geodesic and if Bo =0, M 1= said to be g-totally umbilical

It 1= @ssv to check that a totally contact uwmbilical lightlike hy peraurface of an
indefinite Kenmotsu manifold i= g-totally umbilical.

In the sequel, we nesd the following lemma.

Lemma 3.5, Let (M. g) b a dotally confact umbilical bghiltke hypersurface

of an indefinite Kenmotsu mareifold [I‘L_f gy with £ € TM. Then, YX, 17,

ZeT M),

(VrBNY, ) =A{BX. Y0+ BIX.Z)AY ) - A {ﬂ(zma.gk’}

iV iEeX. aZ) } + (gl Z) — 4V In(Z 3} X(A). (322)

Proof. The proof follows from a direct computing vsing the identities [2.12)

and [3.8). O

Theorem 3.6, Lt M e a tofally contact wmbidical ghtlike hypersurface of an
indefinite Kenmofsu manifold arr with £ TM . Then ¢ = —1 and A satisfies
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the partial differential equations
E{A) 4 Ar(E) - M=, (2.23)
E(A) + Ar(£)+ 1) =0, (3.24)
and PX(Ay+M(PX) =0, PX#£& YXeD(TM).  (325)
Proof. Let M be a totally contact umbilical lightlike hvpersurfacs. The direct
caleulation of the right hand side in (2.14) shows that, for any X, Y 2 T(TM},
(VxB)YYV.Z)—(VyB)(X.Z)=7RXY)ZE)
= % {FAY, 2l X)) — 52X, Z julY)
— TEEXY ul(Z)} + 7Y B(X, Z) — r(X)B(Y. Z). (3.26)
Using (2.22), the Eq. (2.26) becomes
MB(X,Y)I(Z )+ BIX, Z)8(Y )} — gl Z) {g(X,¥) — n(X (¥ )}
=AY {a(X, Z) — alXn(Z)} + 4alY, Z) — Y JnlZ )} X(A)
—MBX, Y)8(Z) + B(Y, Z)AX) } + An(Z){gl X, Y ) — g X)n(¥)}
+ Al X gl Z) — Y )niZ )} - {glX, Z) — piX In(Z)} Y (A
= .:--: ! {F(@Y, Z)u(X) - 7(@X, Z)u(Y) — Z5(SY. X Ju(Z) }
Y )BX, 2y — (X )EB(Y. Z). (2.27)
Begreouping like terms in (3.27) and using (3.6), we deduce
MBI Z)Y ) — BV, 20+ M (X jg(Y 2] — (Y )g( X, 2]}
H{gl¥ Z) = iy (21} X(A) = {glX Z) — i X In(Z) (A
- : : (T, Z)u( X) — F@X, Z)u(Y ) — 25(6Y. X)u(Z) }
Fr(YIB(X, Z) - t(X)B(Y.Z). (2.08)
Putting X = F in (3.28), we find

—ABY. )+ {alV.E) —q{YVin( 21} E(N =—i41uqzyuq}'j —T(EVB(V, 20

(220

Take ¥ = & = U7 in (220} we obtain ¢ = —1. On the other hand, by taking

YV =Vand £ =10 i (3.20), we have (B{17.I7) = A}

E(X) 4+ Ar(E) - 2 =0, {2.30)

Finally, substituting X = FX, Y = FY and ¥ = F¥ into (3.28) with e = -1
and taking into account that S(T°A) is nondegenerate, we abtain

{PXIM + Ar(PX)}PY —g(PY)E) + Ag(PX)PY
={PY (M + A FY ) HPX —q(PXE A PY ) PX. (231)

Putting PX = £ in (3.31), we have {£(A) + A + 1 HPY —g(FY)E) =0
which leads, by taking ¥ =17, ta £(A) + A{r{)+ 1) = 00 and the Eq. (2.24)
I8 proved.
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If X, PV PZ e D(S(TM) — (£)), then (2.21) becomes

{1PX(A) 4+ Ar(FX )} FPY = [FY(A) + A7 (FY) } FXL (2.32)
Meow suppose that there exists a vector field Xy on scme neighborhood of
M such that PXo(A) + AriFPXoj = 0 at some point pin the neighbarhoad.
Then, from (3.22) it follows that all wectors of the Bbre (S(TM) — (£} )p =
(BTMLY & HN(TM)) L Da)p = S(TM jp are collinear with { PXgj,. This
contradicts dum{S{TMJ — [£1); = 1. This 1mplies {2.25). O
Corollary 3.7, There emist no fotally contact umbilical lghtlibe hypersurfaces
M of an smdefinite Kenmolsw manifold [F,c-—,é —1) with £ TM.
A part of Theorem 2.6 1= similar to that on the generic submanifold of indef-
inite Sasakian manifolds case given in [13]. From the Eqs. (3.23)-{3.25), the
gecmetry of the mean curvature wvector H of M 1= discussed. Some equaticns
are similar to those of the indefinite K&hlerian ease (see |7] for details).
Frorn (3.23)—(3.25), we have T-"JE'-H = _I‘,IH,EI:IEN, 'U'é'H = —§ H, E)N and
VeeH =0, PX £ £ %X = [(TM). This mean that the mean curvature
vector 1 is not parallel on M.

Mote that (3.22), (3.24) and (3.25) hold when the ambient manifald M is
replaced by an indefinite Kenmotsu space form E(c} of constant curvaturs
c= =1.

Lemuma *.8. Let M be a tofally confact umbilical Lightlike hypersurface of an
indefinite Kemmoteu space form E[cjl with £ € TM. Then, the mean curvature
wector [ of M s (S(TM) — (&) )-porallel, thai i,

'UéxH =0, PX#g YX eDTM). (3.33)
Meowr, we investigate the effect of semi-parallel condition on the geometry of
lightlike hypersurfaces in an indefinite Kenmotsu manifold.

A submanifold M is said ta be serni-paralle] [5] if its second fundamental form
h satisfies, for any X, Y, Xy, Xo e T(TM),

(RN Y - RIXN1. X)) = —h(R{X, Y )N, Xo) — RN RX.Y )X =00
(3.34)
Theorem 3.9. Let M Be a semi-parallel lightlike hypersurface of an smdefi-
nite Kenmotsu manifold e with £ = TM., Then eftherc = —1 or M s

@(T.-‘Lflj, D D) -mized totally geode sic. Moreover, if e = —1, ther efther M
is totally geadesic or C{E ALFPX ) =0, for any X e [(TM).

Progf. Using (2.3), (2.8), (2.14) into (334} and after caloulation, we obtain
c—3
—3 19, X )BIX, g ) — g (X, X )B (Y, X))

+ % A0 (X )B (Y, Xa)=n(Y In(X B (X, Xq) +5(8Y, X1)B(6X, Xa)

— G0N, Xp ) B(eY, Xo)— 250X, Y ) B(eX . Xa) |- B(X, X1)B(AyY, Xo)
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+ B(Y, X1 )B(AnX, Xa) +$ 1Y X ) BN X ) —g( X, X B(Y Xy )}

1 -
+ % (X n(Xa)B(Y, X)) — (¥ )n(Xa) B{X, X1 )+T(2), Xao) BlaX, Xy )
— F(X, X0} B(éY, X1)— 25X, V) B(éXa, X1) - B(X. Xa)B(AnY, X1)

+BIY, Xq)B(AnX, Xy) = 0. (2.25)
Then, by taking X = F inta (2.35), with the aid of B(E|.) =0, we have
| -
C': {F(3Y, X, }B(6E. Xa) +u(X))B(#¥, Xz) + 2u(Y ) B(X;, Xa) }
+ BV, X1 B(AnE , Xo)+ # 1T X ) BloE, X 4+l Xa) B{eY, X )
+ 2u(Y ) B(éX 0. X1 ) - B(Y, Xo) B Ay E. X 1) = 0. (2.36)

Again, by taking Xo = E into (3.36), we get %I;r_' + Lju¥ 1BV, Xq) = 0
Futting ¥ = I into this equation, we derive %rlc + 15V, X} = 0. Now, if
BiV,X1)£ 0, X1 € T(D & D), then e = —1. £ —1, then B(V,X1) =0,
YX1 e T(D & D7), that is, M is (ST ML), D & D' lemixed totally geodesic.
Om the cther hand, suppose that ¢ = —1. From (3.36) and taking X) = X,
we obtain, S, X B{ApE X)) =0 If B(Y, X)) =0, ¥V Xy € [{TM},
then M is tatally geadesic. If B(Y X1} = 0, then BlAnE, X1) = 0, that is,
CIE AR PX ) =0, for any Xy € [TM). Thus we complete the proof. O
If M 1= a totally contact umbilical lightlike hypersurface of an mndefimite
Kenmotsu manifold 37 with £ eT M, we have

F((R(E.Y) k)(X,,E),E) = %(c + 1) A Yyl Xy ). (3.37)

If the second fundarmental farm b of lightlike hypersurface 1 satisfies (3.34),
then, we have 0 = T (R(E,Y) - h)(X1, E)L,E) = %(c + 1) haef ¥ je( X1 ) which
leads, by taking ¥ = X, =1/, ta %i_ﬂ +1)A = 0. Therefare we have

Theorem 3.10. Let (M g) be a totally confact wmbilical lightlike hypersurface of
ar indefinite Kennmotsu manifold T with £ TM. If the second fundamental
form b of M satdsfies (3.24), then c = —1 or M iz lolally geodesic,

Uging the Dugral=FBejanma Theorem 2.2, we have the following result.

Lemma 3.11. There are no lightiike hypersurfaces of an indsfindte Kenmotsu
manifold (‘lr—irE S -%jl with £ TM and parallel sereen distribudion.

Proof. Suppose ¢ # % and sereen distribution is parallel. From (2.2, we obtain

F(RE, 3N)GE,N) = #. (2.25)

Om the cther hand, using (2.14]

FRXY)PEN) = (Wx O)NY, PZ) - (Vy )X, PZ)
FA(VICIX, PZ) — (X )O(VPZ).  (2.30)
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From Theorem 2.2 and (3.20), we have 7 RE, 6N 16E, N) = 0. Using this
equality together with (3.38), we obtain ¢ = % which is a contradietion. O

Az an example to this Lemma 3.11, we have

Example 3. Let M be a hypersurface of W = {{zy,z9,...,2¢) e BV zp £ 0},
af Example 2, given by

Ty = '.,""E(:g + za) .

where (ry,... 7} is a local coordinate system for B7. As explained in Exam-
ple 2, M 15 a lightlike hypersurface of M having a lacal quasi-orthogonal field
of frames {1 = e, U =en —eg, la = F = :?(eu +ea) —en, Uy =e4, Us =
eg. g =& N = 115{?.15“‘2 + egd + ey}t along M. Dencte by ¥ the Levi-Civita

connection on M. Then, we obtain
Vo, N =—£ and WxN =0 %X cD(TM), X £

Using these equations above, the differential 1-form v vanishes Lo, 7(X j= 0,
for any X £ T'(T'M). So, from the Gauss and Weingarten formulae we have

Anla =& AnX =0, ¥X e D(TM), X £ Us, (3.401)
ARX =0, VxE =0, ¥X e T(TM). (3.41)

Fromn (3.40) and (3415, C(0%,£8 = 1 and #rdg = 0, .. the shape operator

b 18 trace-free. Therefore, the hypersurface M of I is totally geodesic and
its mereen distribution is not parallel. Using the relation (2.17), IF, endowed
with the structure (;5, 7,7 defined in Example 1, is of constant curvaturs

c= —1.

Theorem 3.1E. Let (M, g, S{T M} ) be a totally contact umbilical lightlike hyper-
surface of an indefinife Kenmotsuw mantfold M with £ = TM, such that
S(TM) 4= parallel. If the second fundamental forme h of M satisfies (3.34]),
them M iz tofally geodesic.

Proaf. Let M be a tatally cantact umnbilical lightlilke hyperaurface of an ind=f-
inite Kenmotsu manifold 3 of constant curvature e, with £ € TAM, such that
S(T'M) i= parallel. If the second fundamental form ke of M satisfies (3.34],
then, from (337}, we have

0= %[c + LY Yl X ). (3.42)

Since S TM) is parallel, from procf of the Lemma 311, ¢ = 1} = _1. Sa, by
putting ¥ = X1 = U7 in (3.42), we chtain A =0, that is 1 is totally geodesic
and the proof is complete. O

Mote that when the submanifold M s totally gecdesic, that is, the second fun-
damental form & of A vanishes identically on A, the Eqa. (3.14) and (3.34) are
trivially satisfied. This means the totally gecdesic submamfald M 1= parallel
and semi-parallel. 3o, we have the following result.
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Theorem 3.13. In totally contact umbilical lightldke hypersurfaces of indefiniie
Kenmoteu manifolds 'L_fc tangent to the sfructure vector field £ such that its
screen distribution is parallel, the conditions (3.14) and (3.34) are eguivalent.

Proaf. The proof follows from Theorems 3.3 and 2,12, O

It 1= well known that the second fundamental form and the shape operatar of
a non-degenerate hypersurface (in general, submamfold) are related by means
af the metric tensar field. Contrary to this, we see from (2.6)—2.11) that in the
case of lightlike hypersurfaces, there are interrelations between these gecimet-
ric ohjects and those of its screen distributions. So, the geametry of lightliks
hypersurfaces depends on the vector bundles (S(TA), S(TAM L) and W(TM)).
Howrewer, it 1= Important to investigate the relationship betwesn some geometri-
cal objects induced, studied abowve, with the change of the screen distributions.
In this case, 1t 1z known that the local second fundamental form of M on W
18 independent of the choloe of the above wector bundles. This means that all
results of this paper which depend onlv on B are stable with respect to anv
change of those vector bundles.

Mext, we study the effect of the change of the screen distribution on the results
which also depend on other geometric objects. Recall the fallowing four local
transformation equations (see [T, p. 87]) of a change in S{TM) to another
screen S(TM):

W = ﬂn‘z—i WHWy — ejeyE), (3.43)
! 1 Zr—1 n—1
r-.'*=_-ﬂ.'_5{§ s,(c.f}E+ "z:‘_{ oW, (2.44)
(X} =7(X) + B(X,N' - N}, (2.45)
VY =TV + BiX,Y) {% C‘z:‘; e.gc.f) E - T‘z:‘: c.w.} . (3.46)

where {W; } and {1} } are the local crthenormal bases of S{TM} and S{TAF)
with respective transversal sections NV and N for the same mill section 5. Here
oy and TrTr",“ are smooth functions on If and {€1,..., -1} i= the signature of
the basis {Wy.... . Waq_y }.

Denote by w 12 the dual 1-form of W = ,2_“1_1 oWy (characteristic vector

field of the screen change) with respect to the induced metric g of M, that 1=
wl) =gl W),

Let P and P’ be projections of T on S(TM) and SITM ), respectively with
respect to the orthogonal decompesition of TA. Using (3.44), 1t 1= easy to
check that C(X, P'Y) = OX, PY), for any X, ¥ e TITA ).

The relaticnship between the second fundamental forms & and Y of the screen
distributions S{T M) and S(TAM )V, respectively, is given by [using (3.44) and
(348}
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C'{X,PY) = C(X,PY) - %u('?xp}’ + B(X.Y)W). (3.47)

Mote that if the lightlike hypersurface A is totally geodesic, by (3.46]), the
linear connection W iz unigque.

Theorem 3.14. Led (M, g S(TM )} be o lightlike hypersurface of an indefi-
nite Kenmotsu manifold (M, F) with £ & TM. The covariant derdvatives W
of h = BEN and V' of B = BEN' in the screen distributions S(TM)
and S(TAM), respectively, are related as follows: for any X, Y, Z £ T(TM).
FUVERMY ZLE) = iV RV Z)LE) + LK.V, Z), where £ is given by
DX Y. Z)=BXY)BZW)4+ BX.Z)B(Y. W)+ BY Z2)5(X ).

We note that L(X, Y, 2} is symmetric with respect to X, ¥ and Z. Moreover
Lo« Ey="0and CAXY)=LX Y8 = —uWIBXY) - w(X)BY W) -
w(¥ JB{X, W), Also, it is easy to check that the paralleli=m of & is indepen-
dent of the screen distribution S(TAM (V'8 = Th) if and only if the secand

fund amental form B of M vanishes identically on M.
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