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Abstract. A theoretical investigation of the effects of hill-like and cup-like parabolic confining electric
potentials on photoionization cross section (PCS) in a spherical quantum dot is presented. The hill-like and
the cup-like parabolic potentials are superimposed on an infinite spherical square well (ISSW) potential.
As the cup-like parabolic potential intensifies, the peak of the PCS becomes redshifted for the s → p
transition, and becomes blueshifted for the p → d, d → f (and so forth) transitions. The hill-like parabolic
potential, on the contrary, blueshifts peaks of the PCS for s → p transitions, while it redshifts those of
transitions between higher states as it intensifies. Consequently, the two potentials discriminate between
transitions involving the ground state and those involving higher states.

1 Introduction

Realization of nanostructures of different dimensions and
geometries has been beneficial to the scientific commu-
nity and the world at large, because of applications and
possible applications in a wide range of disciplines like
biomedicine and other social remedies [1], gas sensing [2],
optoelectronics [3,4] and thermoelectric applications [5,6],
among others. The mushrooming of different techniques of
obtaining a plethora of nanostructures has prompted both
theoretical and experimental research into these struc-
tures. Among quantum phenomena probed, photoioniza-
tion is equally appealing. The effect of anisotropy of quan-
tum confinement on photoionization cross section (PCS)
has been probed, and was shown to be appreciable for cer-
tain degree of anisotropies [7]. Influences of electric fields
and intense laser fields on PCS have been also reported
on, revealing a blueshift of the peak of the PCS with in-
creasing laser strength [8]. PCS of a trion (a hole or an
electron bound to an exciton) was probed by Xie, and how
it is affected by pressure, parabolic confinement frequency
and hole mass [9]. Apart from parabolic confinement, the
other confining potential topography which has been stud-
ied is the power-exponential [10]. PCS of quantum rings
has also been reported, and how it is influenced by the
size of the inner radius of the rings [11] and by externally
applied magnetic field [12,13]. The role that impurity po-
sition plays in modifying the PCS in a core-shell nanodot
has been investigated [14]. In this communication, the ef-
fects of cup-like and hill-like parabolic confining potentials
on PCS of a donor in a spherical quantum dot (SQD) are
investigated.
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2 Theoretical model

2.1 Photoionization cross section

The system investigated is a spherical quantum dot
(SQD), which may be a GaAs material embedded in a
Ga1−xAlxAs matrix, with a donor impurity entrenched at
the centre. The potentials inside the spherical dot assume
parabolic geometries. A bi-parabolic (cup-like) potential
is contrasted with an inverse lateral bi-parabolic (hill-
like) potential, each superimposed on an infinite spherical
square well (ISSW). Photoionization cross section, which
can be regarded as the probability that a bound electron
can be liberated by some appropriate radiation per unit
time per unit area, is given by [8–12]

σlm = σ0�ω
∑

f

|〈f |r|i〉|2δ(Ef − Ei − �ω) (1)

with

δ(Ef − Ei − �ω) =
�Γ

(Ef − Ei − �ω)2 + (�Γ )2
, (2)

where �ω is photon energy, Γ the impurity linewidth
and σ0 = 4π2αF Sn

3εm
(Ein

Eav
)2. Ein is the effective incident

electric field while Eav is the average electric field in
the dot of refractive index n and dielectric constant εm.
Ei and Ef are energies associated with initial and fi-
nal eigenstates |i〉 and |f〉, respectively. 〈f |r|i〉 is the
usual interaction integral coupling initial states to final
states, αFS is the fine structure constant and r is elec-
tron position vector. The wave functions are obtainable
as solutions to the Schrödinger equation with the form
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Ψlm(ρ, θ, φ) = ClmYlm(θ, φ)χ(ρ), dependent on the poten-
tial, where χ(ρ) is the radial component of the wave func-
tion satisfying the Schrödinger equation

1
ρ2

d

dρ

(
ρ2 d

dρ
χ(ρ)

)
+

{
2μ

�2
[Elm+

kee
2

εmρ
−V (ρ)] − l(l + 1)

ρ2

}

× χ(ρ) = 0 (3)

with μ being effective mass of electron (of charge −e) and
ke the Coulomb constant. The orbital momentum quan-
tum number, l(l = 0, 1, 2, . . .), quantifies angular momenta
of electrons in different states. Ylm(θ, φ) are the usual
spherical harmonics, m being the magnetic quantum num-
ber and Clm the normalization constant. Evaluation of the
interaction integral leads to the selections rules Δl = ±1,
between the initial and final states [10].

2.2 The wave functions

2.2.1 The bi-parabolic (cup-like) potential

The bi-parabolic potential superimposed on an ISSW has
the mathematical form

V (ρ) =
1
2
μω2

0(ρ − R/2)2 (ρ < R)

and infinity elsewhere. If, after insertion of the expression
for the bi-parabolic potential into the Schrödinger equa-
tion, one makes the transformation

χ(ρ) = ρle
μω0
2�

(ρ−R)ρF (ρ),

then, in the presence of the impurity, F (ρ) satisfies the
second order differential equation

d2F (ρ)
dρ2

− dF (ρ)
ρdρ

[μω0

�
(R − 2ρ)ρ − 2(l + 1)

]

− F (ρ)
ρ

{
μω0

�
[R(l + 1) − (2l + 3)ρ] +

2μρ

�2

(
E +

kee
2

ε

)}

= 0. (4)

If we let

z = −i

√
μω0

�
ρ

then equation (4) can then be recast as:

d2F (z)
dz2

− dF (z)
zdz

[
2z2 + iR

√
μω0

�
z − 2(l + 1)

]

− F (z)
2z

{[
2(2l + 3) +

4E

�ω0

]
z + 2i

√
μω0

�
(l + 1)R

+
4ikee

2

ε�

√
μ

�ω0

}
= 0, (5)

which is a Heun biconfluent equation whose solution
is [15,16];

F (z) = HeunB(|2l + 1|, α, β, γ, z) (6)

with

α = iR

√
μω0

�

β = −2Elm

�ω0

γ = −4ikee
2

�εm

√
μ

�ω0
, (7)

therefore the solution can be written as:

χ(ρ) = eg1(ρ)ρlHeunB(2l + 1, α, β, γ, g2(ρ)) (8)

with the arguments

g1(ρ) =
μω0

2�
(ρ − R)ρ (9)

and

g2(ρ) = −i

√
μω0

�
ρ. (10)

Requiring that the electron wave function should vanish
at the walls of the SQD, the energy spectrum for an elec-
tron in an SQD with an intrinsic bi-parabolic potential is
availed as:

Elm = −1
2
βE�ω0 (11)

where βE is the value of β that satisfies the condition

HeunB(2l + 1, α, βE , γ, g1(R)) = 0. (12)

Disregarding the electron-impurity interaction, the
Schrödinger equation is still solvable in terms of the Heun
biconfluent function (Eq. (8)) with parameters being iden-
tical to those for this potential in the presence of the donor
impurity equations (7), (9), (10) except for γ = 0 and
β0 = − 2E0

lm

�ω0
, availing the energies without the Coulombic

interaction as:
E0

lm = −1
2
β0

E�ω0, (13)

where β0
E is the value of β = β0 that satisfies the condition

specified in equation (12).

2.2.2 The inverse lateral bi-parabolic (hill-like) potential

This potential is minimum at the centre of the SQD, and
concavely increases parabolically to attain a maximum at
a radial distance half the radius of the SQD. It then con-
cavely decreases to its minimum at the walls of the SQD
(ρ = R);

V (ρ) =
1
2
μω2

0(Rρ − ρ2) (ρ < R)

and infinity elsewhere. Inserting this expression for
the inverse lateral shifted parabolic potential into the
Schrödinger equation in the presence of the impurity and
letting

χ(ρ) = ρle
μω0
2i�

(R−ρ)ρF (ρ)
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leaves the radial component of the Schrödinger equation
reading as:

d2F (ρ)
dρ2

− dF (ρ)
ρdρ

[
iμω0

�
(R − 2ρ)ρ − 2(l + 1)

]

− F (ρ)
ρ

{[
iμω0

�
(2l + 3) +

μ2ω2
0R

2

4�2
− 2μE

�2

]
ρ

− iμω0

�
(l + 1)R − 2μkee

2

ε�2

}
= 0. (14)

A further substitution

z =

√
−iμω0

�
ρ

morphs equation (14) into

d2F (z)
dz2

− dF (z)
zdz

[
2z2 + iR

√
μω0

−i�
z − 2(l + 1)

]

− F (z)
2z

{[
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2

2i�
+

4E
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z

+2

√
−iμω0

�
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4kee
2

εi�

√−iμ

�ω0

}
= 0, (15)

which is also solvable in terms of the Heun biconfluent
function (Eq. (6)) but with

α = R

√
μω0

i�

β =
μω2

0R
2 − 8Elm

4i�ω0

γ =
4kee

2

�εm

√ −μ

i�ω0
. (16)

Thus, the radial component of the wave function for a
hill-like parabolic potential in a spherical quantum dot is
given by equation (8) with

g1(ρ) =
μω0

2i�
(R − ρ)ρ (17)

and

g2(ρ) =

√
−iμω0

�
ρ. (18)

Application of the boundary conditions at the walls of the
SQD avails the energy spectrum as:

Elm =
1
8
μω2

0R
2 − iβE

2
�ω0, (19)

with βE being the value of β that satisfies the condition
set in equation (12).

In the absence of the impurity, the parameters have
the same expressions as those for this potential in the
presence of the impurity (Eqs. (16)–(18)) with the excep-
tion of γ = 0 and β0 = μω2

0R2−8E0
lm

4i�ω0
, hence the energy

Fig. 1. The effects of the two parabolic potentials (which
are the dash-dotted curves) on the ground state radial elec-
tron wave functions across an SQD. The plot marked with
dots corresponds to the ground state wave function in an SQD
with a cup-like parabolic potential while the one marked with
squares is associated with the hill-like parabolic potential, each
of strength (�ω0 = 15 meV). The solid unmarked plot is the
ground state radial wave function in an SQD with a purely
ISSW (�ω0 = 0 meV).

associated with the hill-like parabolic potential without
the Coulombic interaction can be cast in the form

E0
lm =

1
8
μω2

0R
2 − iβ0

E

2
�ω0, (20)

β0
E still being the value of β = β0 that satisfies the condi-

tion stipulated in equation (12).

3 Results

This section is dedicated to discussions and analysis of
the results. The parameters used in the computations
are μ = 0.067me, me being the free electron mass and
εm = 12.5, pertaining to GaAs nanodots. Although the
discussions here include transitions between higher states,
for succinctness, the PCS illustrated in the this paper are
associated with the s → p transitions only. The geome-
tries of the confining potentials are illustrated in Figure 1,
which depicts the influence of these potentials on the ra-
dial component of the ground state electron wave func-
tion, with κ = [2/(μω2

0R
2)]. By virtue of the fact that the

cup-like parabolic potential is maximum at the centre and
at the walls of the SQD, the ground state electron wave
function at those regions is reduced, and the reduction
increases with increasing potential intensity. For excited
states, the electron wave functions are merely tightened
around a radial distance half the radius of the SQD.The
hill-like potential, contrastingly, is most intense at the ra-
dial distance half the radius of the SQD (r0 = ρ = 0.5R),
and thus dwindles electron wave functions at this radial
distance, enhancing them elsewhere, as it gets stronger.
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Fig. 2. The radial probability densities of the first three low-
est lying states. The solid plots represent radial probability
densities in the absence of the impurity while the dashed are
associated with the presence of the donor impurity.

The presence of either the hill-like parabolic potential
or the cup like parabolic potential will, of course, shift
peaks of the probability densities, but this will have no
bearing on the reasoning that follows. The most probable
radial position of the ground state is in a region where
the hill-like (cup-like) parabolic potential is less (more)
intense than at the radial expectation value of the first ex-
cited state. The hill-like parabolic potential shifts peaks of
probability densities of the ground towards the centre, and
those of the excited states towards the walls of the SQD,
expelling electrons away from a region where it (the hill-
like parabolic potential) is maximum (at r0 = ρ = 0.5R).
Contrastingly, the cup-like parabolic potential shifts peaks
of probability densities towards r0, where the potential is
minimum. Consequently, the hill-like (cup-like) parabolic
potential perturbs the first excited state (ground state)
more than it does the ground state (excited states), thus
the potential has the propensity to increase (reduce) s → p
transition energies (ΔE = Ef −Ei) as it intensifies. Con-
trastively, the second excited state electron spends most
of its time where the hill-like (cup-like) parabolic potential
is weaker (stronger) than at the radial position expecta-
tion value of the first excited state. This can be seen in
Figure 2 where the variations of radial probability den-
sities (Rlm(ρ) = ρ2χ(ρ)2) of the first three lowest lying
states have been graphically illustrated. The vertical line
represents r0, where the hill-like (cup-like) parabolic po-
tential is maximum (minimum). The arrows represent the
allowed photoionization transitions from the two lowest ly-
ing states in the dipole regime. As such, the hill-like (cup-
like) parabolic potential naturally diminishes (enhances)
transition energies associated with the first and second
excited states, as well as between higher states (Fig. 3).
Effectively, the hill-like (cup-like) parabolic potential red-
shifts (blueshifts) peaks of p → d PCS and those of higher
states, while it blueshifts (redshifts) peaks of s → p PCS,
as it intensifies.

Fig. 3. The energy differences between the ground state (s)
and the first excited state (p) as functions of strengths of
the parabolic potentials for the indicated radii of the SQD;
the plots marked with dots are associated with the cup-like
parabolic potential while those marked with squares are asso-
ciated with the hill-like parabolic potential.

Fig. 4. The variation of the normalized PCS with strengths of
the cup-like (curves with dots) and the hill-like (marked with
squares) parabolic potentials for the different beam energies of
excitation.

The energy difference between the s and p states in an
SQD of radius 300 Å is in the vicinity of 17.762 meV in
the absence of the parabolic potentials (�ω0 = 0 meV).
Figure 4 shows the dependence of the normalized PCS for
a spherical quantum dot of such dimensions on strengths
of the parabolic potentials. Thus, if the beam energy of
excitation is less than �ω0 = 0 transition energies, then
the cup-like parabolic potential can be utilized to capac-
itate s → p photoionization (and demote photoionization
from higher states) while the hill-like parabolic potential
facilitates photoionization from higher states (demoting
s → p photoionization).
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Because transition energy scales inversely with the ra-
dius of the SQD, the two potentials afford us the ability
to modulate transition energies without necessarily having
to tamper with the dimensions of SQDs. This is advanta-
geous in cases where excitation energy is to have a specific
value which an ISSW quantum dot of the required radius
may not have.

4 Conclusions

Analytical expressions for electron wave functions in a
spherical quantum dot with and without a centred donor
impurity have been obtained and utilized to probe the
effects of the cup-like and hill-like parabolic potentials
on PCS in an SQD. The two parabolic potentials ex-
hibit selective enhancement and reduction of transition
energies: hill-like (cup-like) parabolic potential enhancing
(dwindling) transition energies involving the ground state
and dwindling (enhancing) those involving higher states.
Consequently, the hill-like (cup-like) parabolic potential
blueshifts (redshifts) peaks of s → p PCS while it redshifts
(blueshifts) those involving higher states. The ability of
these potentials to modify transition energies without al-
tering the sizes of SQDs avails nanotechnology immense
control over tunability of these structures, through appro-
priate nano patterning.

I would like to express my sincere gratitude to G.A. Nkoni for
editing of this paper.
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Záyago, E.A. Figueroa, C. Baagattolli, T.J. Carrozza,
A. Chiancone, W. Urquijo, J. Nanopart. Res. 17, 233
(2015)

2. G. Chandrasekaran, A. Sundararaj, H.A. Therese,
K. Jeganathan, J. Nanopart. Res. 17, 233 (2015)

3. G. Kang, J. Yoo, J. Ahn, K. Kim, Nano Today 10, 22
(2015)

4. A.K. Rishinaramangalam, S.M. Ul Masabih, M.N.
Fairchild, J.B. Wright, D.M. Shima, G. Balakrishnan,
I. Brener, S.R.J. Brueck, D.F. Feezell, J. Electron Mater.
44, 1255 (2015)

5. G. Pennelli, Eur. Phys. J. B 88, 121 (2015)
6. S. Cecchi, L.F. Llin, T. Etzelstorfer, A. Samarelli, Eur.

Phys. J. B 88, 70 (2015)
7. L. Yang, W. Xie, Physica B 407, 3884 (2012)
8. L.M. Burileanu, J. Lumin. 145, 684 (2014)
9. W. Xie, Superlattices Microstruct. 63, 10 (2013)

10. W. Xie, Superlattices Microstruct. 65, 271 (2014)
11. C.T. Jin M, Xie W, Superlattices Microstruct. 62, 59

(2013)
12. M.G. Barseghyan, A. Hakimyfard, M. Zuhair, C.A. Duque,

A.A. Kirakosyan, Physica E 44, 419 (2011)
13. W. Xie, Phys. Lett. A 377, 903 (2013)
14. E.C. Niculescu, M. Cristea, J. Lumin. 135, 120 (2013)
15. E.R. Arriola, J.S. Dehesa, J. Comput. Appl. Math. 37, 169

(1991)
16. E.S. Cheb-Terrab, J. Phys. A 37, 9923 (2004)

http://www.epj.org

	Introduction
	Theoretical model
	Results
	Conclusions
	References

