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Abstract

The azimuthal surface nucleation field of an infinitely long type I1 superconducting cylindrical filament is calculated
from the linearized Ginzburg-Landau equation for the order parameter. A current is thought to be passed along the
axis of the filament which induces a magnetic field in the azimuthal direction. On increasing the current, the field in-
creases to a value whereby a phase transition from the superconducting to the normal state occurs. The magnetic field
lines are parallel to the surface of the cylindrical filament so that the required critical field is Ha; the parallel surface
nucleation field of a type 11 superconductor. The systems considered are a solid cylinder; free-standing and in a metallic
matrix; and a very thin-walled hollow cylinder. The full numerical analysis is carried out only for a solid cylinder. In the
case of a thin-walled cylindrical shell, the gquantitative description of the superconducting-normal phase is given in
terms of the limiting form of the temperature for small fields.
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. Introduction

It has long been known that superconductivity
can be destroyed by an apphed magnetic field [1].
The flux associated with the applied magnetic field
15 expelled from the bulk of a type 1l supercon-
ductor for fields less than the bulk critical value,
H 2] At this value of the apphed field, a type 11
superconductor undergoes a second order transi-
tion from the superconducting to the normal state.
Clearly, for fiedds higher than Hg the flux pene-
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trates the material which is then in the normal
state. A higher surface nucleation field, H, =
1.6YH,,, appears at the planar surface of a type 11
superconductor 1n a parallel magnetic field [3]. In
their extensive investigations, both experimental
and theoretical, Guyon et al [4] found that the
surface nucleation field of a very thin film s very
different from that of either a thick film or a semi-
mfinite specimen. One of the findings (rom their
mvestigations was that at a certain critical thick-
ness of the film. it becomes possible fora vortex to
fit inside the film. This phenomenon, characterized
by a point of mflection on the temperature-field
curve, 15 assoctated with the first ux-entry point.
Motivated by how the parallel surface nucleation
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field changes according to ether the dimensio-
nality or the shape of a superconductor as well as
by the advancement in fabrication technigques
[5] Masale et al. |6] reconsidered a number of sys-
tems with eylndrical symmetry. Distinet flux-entry
points, which are quantized i integral multples of
the flux quantum, ¢y = Af2e, are clearly seen n
the universal field-temperature curve of a cylinder
in a parallel magnene field [6-8]. As such, 1n a very
thin-walled hollow cylinder timmersed in a parallel
magnetic field, the flux-entry points are such a
prominent feature of the field-temperature curve
giving rise Lo what are known as Little-Parks
oscillattons [9]. In the numerous mvesbgations
concerned with the critical fields of type 1 su-
perconducting specimen, the Gmzburg-Landau
(G-L)equation has been employed mn 1ts Inearized
form [3.4.6-8]. This 15 on account of the well
known feature of the Landau theory of phase
transitions, namely that near a phase transition
the order parameter becomes very small [10]. The
higher-order terms of the order parameter in the
G-L equation may therefore be neglected, giving
rise o the Ineanad form of the G-L equation [8].
This approach provides a scheme of solvable
equations which gve an adequate gquantitative
description of total flux exclusion in type I su-
perconducting specimen [4,6.8]. Because ol per-
sistent circulating currents at the surface of a
superconducting cylinder in a paralkl appled
magnetic field [11] between Ho and Hea, a long
macroscopic superconducting cylinder appears as
a gant single vortex [12]. In addition, it has been
shown expermmentally that a current-carrying state
can occur for apphed fields less than the bulk
critical value, Hea [13].

The aim of this study 1s to map out the critical
field versus temperature curves of type 11 super-
conductmg cylindrical filaments in the cse of a
magnetic field applied in the azmuthal direction.
The thought experimental set-up 15 as follows: a
current along the axis of a superconducting cyl-
inder induces a magnetic field in the azimuthal
direction. The magnetic field lnes are parallel o
the surface of the superconducting filament. With
increasing current, the magnetic field reaches a
value of Hs(g), the azimuthal parallel nucleation
field, at which the cylindrcal filament 15 brought

into the normal state. Carrying out idirect resis-
tvity measurements, for example, as in recent ex-
periments on high-T. superconductors [14], the
known critical current can be used in the compu-
tation of the required cntcal field. One of the
complications that arises in the systems considerad
here 1s that the applied magnetic field 1s not uni-
form but instead varies with the radial distance.
This raises the gquestion concerning the nature of
the trajectories of a charged particle i an inho-
mogeneous magnetic field and therefore the de-
pendence of the cyclotron [requency on the
magnetic field or on the radial distance. A possible
consequence of the inhomogeneity of the induced
field is that there could arise spatial distributions
of the superconducting phases of the specimen.
This puts in doubt the adequacy of the linearzed
G-L equation to provide a realistic account of the
superconducting phases across a sample subjected
to a spatially mhomogeneous magnetic field. Fink
and Presson [12] addressed this question in their
analysis of the vortex state based on the full G-L
equation, meluding a discussion on the hysteric
nature of the magnetization and 1ts characteriza-
tion in terms of the relevant Ginzburg parameters.
There 15 a remarkable similarity between the
problem formulated by Fink and Presson [12] and
the one considered here. The above mentioned
similarity arises from the reciprocal nature of a
magnetic field and a current to in turn induce one
another. The gant vortex state considered [12)
comes into existence as a result of the application
of a uniform magnetic field parallel to the axis of a
solid cylinder. The applied magnetic field mduces
circulatmg currents, which are n fact responsible
for the Metssner and the mixed states of a type 11
superconductor, with the result that the cylinder
then takes the form of a glant current voriex [11]
Here, the situation is the other way around in that
a thought-uniform current density along the cyl-
inder axis generates a spatially mhomogeneous
magnetic field in the azimuthal direction. While
conventional experiments provide information on
the onset of superconductivity [15,16], the above
mentioned spatial variations of the superconduct-
ing phases should easily be accessible in the newly
developed micro-magnetization measurement tech-
nigue [17].
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The lay-out of this paper 15 as follows: the
formalism for the calculation of the azmuthal
critical field 1s outhined in Section 2. The discussion
of a sohd cyhnder, free-standing and m a non-
superconducting metallic matnx, 1s presented in
Section 3. Section 4 deals with the system of a thin-
walled current-carrying cylindrical shell. A geo-
metrically similar system, that of a eyhindrical shell
enveloping a current-carryimg core, 15 briefly dis-
cussed i Section 5. Finally, the concluding re-
marks are given in Section 5.

2. Formalism

The superconducting phase of a type 1l super-

conductor may be adequately described by the
lineanzed G-L equation for the order parameter i
given by [10]
%(—:ﬁv —2eA) 4o =0, ()
where A 1s the vector potential, uis the mass of a
particle ol charge Zeand, 2 = o (T — Ti), the G-L
parameter in terms of the bulk critical temperature
Tu. The general expression for the quanium me-
chamcal current density s given by

3 = —(aeh/ @) (4" — ) — (4 w0 "A
(2)

The geometry of the superconductor enters the
ergenvalue problem via the boundary condition for
a superconductor-nsulator imterface [15,18],

B (— Y — 2ed )i =0, (3)

in which @1 a unit vector normal to the interface.
For reasons of symmetry, A = (0,0,4;). The so-
lution of the linearized equation for the order pa-
rameter 1% sought m the general form:

W = Cue explikzz) explime)zip),
mo=0,%1, 42, ., (4)

where Cpe 18 a constant, £ is the axial wave
number and 18 the azimuthal quantum number.
With the form of the wave function given by Eq.
(4), the G-L equation for the order parameter
takes the following form:

d  dy 2 4K
Lo |2 -2 &g
P (P dp) {m ﬁ2|3|f
2
+ (k, + 2§A=) pz]x =0. (5)

Eg. (5), taken together with the form of the
boundary conditton prescribed by Eq. (3) 15 em-
ployed in the determination of the azimuthal sur-
face nucleation field for the different systems in the
following sections. Here, unhke in the case of an
axial applied magnetic field |6-8], the required
critical field corresponds stnetly to the zero an-
gular momentum (m = 0) eigenlunciion.

3. Current-carrying solid cylinder

The vector potential of the magnetic fiekd due to
a umform current density, Joy = I/ (nR?), where
1 the current fed mto one end of the sohd cylinder
s laken in the gauge:

1 )
A =— E,ﬂ.}fud?z. (a)
where py 1s the permeability of the non-magnetic

material. With the explicit form of the vector po-
tential given above, the G-L equation for ¢ be-

comes
1 2
£e— (Ek,R — f_r)

where x = p?/R®, and the temperature ¢ and the
field f are defined by the dimensionless variables:

&y d
_r—x-i-—x-i-

e=pla| P2 and  f =nB.R* 2, 8

Here, B, = pod/(2nR), 15 the value of the magnetic
field at the surface of the cylinder. The point about
the non-uniformity of the mduced magnetic field
here needs to be emphasized. The general defim-
ton of fmay be taken simply as the magnetic flux
penetrating a surface perpendicular to the plane of
the cyclotron orbit per twice the flux quantum.
The difficulty that arises in this case 15 that not
only 1s the magnetic field inhomogeneous but that
the eyclotron orbits are in the plane of the cylinder
axis. Eg. (7) 15 solved numerically since 1t 15 not
possible to cast 1t nto a canomcal form. This
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makes 1 essential, therefore, to develop some
limiting forms of its selutions which will serve as a
puide to the full numerical solution. For a very
small current, the term parabolic m fin Eq. (7) can
be neglected and the limiting form of the differ-
ential equation that arises is solvable in terms of
the confluent hypergeometric function. The solu-
tion of the radial equation, B in place of ¥, 1s
obtained as:

W = expl—cg/2IMia, 1,2), 9

where the parameter g and the argument ¢ of the
confluent hypergeometric function A are given by

| fe— 3R]
=—4+—-——2=  and ¢= ke x.
e nV/TETRR)
(10)

For very small currents, Eq. (9) can be solved to
obtain the required critical values of the tempera-
ture and the field.

b |

31 Free-sianding

An even less numerically taxing approach for
generating the field-temperature curve follows
from the constant  hmiting form of e, obtained
by integrating the G-L equation across the thick-
ness of a [ree-standing sohd cylinder. The ap-
proximate result 15 given by:

e IR — Y |RY + 172 11}

The corresponding result for a sohd cylinder in
a parallel magnetic field, which 15 a shght im-
provement on the result obtained by Constantmou
et al. [8B], 15 as [ollows:

e~ I — mlf + 2. (12)

The analogous result for a thin film of thickness
d1n a parallel magnetic field 1s given by

e~ Y2+ 17, (13)

where &, (which must be taken as zero for small )
15 the wave vector component perpendicular to the
magnetic field and parallel to the walls of the film.
The simularity between this problem and that of a
thin film in a parallel magnetic field s twolold. As
stated earlier, the magnetic field lines are parallel

to the boundary of the superconductor. The sec-
ond feature of similarity 1s that the center of the
cyclotron orbit 1s determmed by the value of the
wave vector component, & or k. It needs to be
emphasized that, unlike m, which is discrete, these
wave numbers are continuous variables.

[t 15 also helpful to derive the explicit expression
for the current density since the nature of the su-
perconducting phase across the cylinder thickness
may be mferred from 1t Smee the radial wave
function 1s real and only the z component of the
vector potential is considered, only the z compo-
nent J. of the current density 18 non-zero and is
given by
20 kIR + 25, (14)
iz
where Jy, = 2eh/(uR).

Returning te the eigenvalue problem, the
strategy employed to obtain the eigenvalues s as
(ollows [8]: first fix f, then search for the value of
the luxeid number, &R (kd or m), that gives the
lowest value of e. Only the minimum value of € has
physical sigmificance since 1t 15 the one that corre
sponds to the required cnibcal field. The key fea-
ture that emerges in these systems (Eqgs. (11)-(13))
15 that in the case of the cylinder in an azimuthal
magnetic field, the fux-entry pomnts oceur for all
non-zero magnetic field values. Despite the similar
form of Eqs. (11) and (12), m = 0 but & # 0 will
give the lowest eigenvalue of e for non-zero field,
due to the lact that m 15 a discrete quantity
whereas & 15 a continuous vartable. Since & 15 a
continuous variable, the presence of the azimuthal
field, irrespective of 1ts strength, gives rise o the
existence of the & > 0 bound states. The eigen-
values corresponding to & <0 are larger than
those for &k, > 0 and therefore have no physical
significance.

The temperature-field curves of some type L1
superconducting filaments are shown in Fig 1.
The maimn result of this study 15 shown as curve (a)
which represents the full numerical solutions of
Eq. (7). The dashed curve (b) 1s the corresponding
constant ¢ approximation generated from Eq.
(11). The full numerical results for a sohd cylinder,
curve (¢), and that of a thin film, curve (d), n
uniform parallel magnetic fields are included here
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Fig. 1. The critical feld-temperaturs curves lor some type 11
superconducting filhments: (2) solid cylnder in an azmuthal
magnetic field, (b) the constant || approximate result for the
system of curve (a), (2 the result fora sohid cylinderin a parallel
magnetic fizld and (d) the result for a thin flm in a parallsl
magnetic fisld.

for reference. First, note the good agreement be-
tween the exact, Fig. 1(a), and the approximate
results, Fig. 1(b), for the range of the field values
assumed here. Second, 1t 1s seen that for the given
critical temperature, the azimuthal critical field is
significantly higher than the parallel eritical field of
either a solid eylinder or a thin film. This 15 a direct
consequence of having non-zero fluxoid numbers
for all the field values in the case of a cylinder in an
azimuthal magnetic field. 1t 15 worth mentioning
that the e-f curve corresponding to & = 0 lollows
very closely the critical field-temperature curve of
a thin film, at least for the range of the f values
assumed. Note also that for very fine filaments
(small B or d) all the curves shown in Fig. 1 are
parabolic in f. Since for large f(corresponding to a
thick cylinder) the curvature of the cylinder can
hardly matter, the result for a flat surface in a
parallel magnetic field should be recovered. This 15
not the case here and to this end some few ob-
servations are noted as follows: the mduced mag-
netic field is not uniform but increases linearly

with the radial distance. This implies that the m-
nermost regions of a thick cylinder, where the field
15 less than He, should be in the superconducting
phase. The region just outside the radius R,
corresponding to the magnetic field contour value
of Ha, should then be in the normal state. A su-
perconducting sheath, of course, persists at the
surface of the cylinder for fields up to the higher
parallel surface nucleation field Hs. Now, with
reference to the field-magnetization curve of a
type II superconductor [10], the imaginary cylin-
drical shell of thickness (R —Ra) can be in the
mixed state, depending on the thickness of the
cylinder.

For very thick cylinders the region just outside
R should be in the normal state. For relatvely
thin cylinders, when R.; is not very different from
R, surface nucleation can in principle extend to the
region bounded by Ra. The field just outside this
region, however, should still be less than the sur-
face nucleation field.

Fig. 2 shows the radial wave function pro-
files for some pomts on the asmuthal cnncal
field-temperature curve of Fig. 1(a). Each curve

(kR = 2.0 1

(k:ﬂ"'l'u" 3

B,
p/R

Fig. 2. The wave lunction profiles across the eylinder for some
points on the field-temperature curves shown as Fig, 1(a). In
particular, the Muxoid values, indicated against each of the
corresponding curves are: 8 = 0.5 for the curve, increasing in
steps of 0.5, up o 2.0 for the highest curve.
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corresponds to a different value of the fluxowd
number. These are: £.R = 0.5, for the lowest curve,
increasing in steps of 0.5 up to 2.0 for the highest
curve. For small values of £, that is, for R < £, the
radial function can hardly change across the cyl-
inder radius. In the hmit of small f] the cylinder
nucleates uniformly across 1ts thickness. For -
termediate values of the field, B ~ £, the radial
variations of y begin o emerge. For £ > R, there 15
a buld up of the wave function towards the sur-
face of the cylinder. This confirms the presence of
a superconducting sheath near the surface. It 15
seen from Fig. 2 that for relatvely large values of f
the radial wave functions are characterized by a
peak. The peak occurs near the surface and can
therefore extend nto the region where the surface
nucleation sheath persists. Smee the imduced
magnetic field mnereases with the mcrease in the
radial distance, this peak may be viewed as signi-
fying the region of the cylinder where, near the
surface, the superconducting phase 1s most stable.
Onee again, note that the field at the radial dis-
tance corresponding to this peak 18 between He
and Ha. The fine grid of the y axis implies that for
the used values of &R the radial function remains
more or less constant across the cylinder thickness.
In any case the {f, &R} points have been selected
from the region of the e-f curve where the con-
stant W approximation 15 adequate, compare
curves (a) and (b) of Fig. 1. Unlike a cylinder in a
uniform parallel magnetic field the radial wave
function in this case is finite even at the origin,
which 1mples the presence of superconductivity
there. This s confirmed by Fig. 3 for the current
density curves corresponding to the wave func-
tions shown m Fig. 2. The curves m Fig. 3 are
labelled by their &R values, which are: 0.5 for the
lowest curve, increasing in steps of 0.5 up to 2.0 for
the highest curve. It 15 seen that J; builds up to-
wards the cylinder surface for increasing values of
kR. Again, this is consistent with the persistence of
the surface nucleation sheath. The resulis shown in
Figs. 2 and 3 should be regarded as lustratuve
since they are based on the lmearized rather than
on the full G-L equation. Furthermore, there can
arise an additonal superconducting state below
He. Arguably, an adequate quantitative descrip-
tion of this current-carrying state should be based

B

. @,
p/R
Fig. 3. The distribution of the quantum mechanical current
density across the evlinder radius corresponding to the wave
functions shown in Fig 2, The curves stack-up according Lo the
increasing luxoid numbers as: LR = 0.5, (0.5) 2.0,

on the full G-L equanon. The results depicted n
Figs. 2 and 3 are nonetheless very similar to those
obtamed from the solutions of the full G-L
equation [12]. This suggests that the lmearzed
G-L equation 15 uselul, at keast as a first approx-
imation, in the description of the superconducting
phases of a sample mmersed in a spatally inho-
mogeneous magnetic feld.

3.2, Metallic cladding

When a superconductor 1s plated with a normal
metal, the wave function 15 no longer constant
at the miterface but 13 instead systematically de-
pressed. The extent of the depression 15 such that
the slope of the wave function at the surface can be
extrapolated to the value, /4, where the doping-
controlled parameter & 1s the extrapolation length.
The condition of a zero gradient at the boundary
15 then modified according to [18]:
% + I‘I’T =0 (15)
dp &

Fig. 4 shows the e~f curves for the system of a
solid cylnder n an azimuthal magnetic field plated
with a normal metal. Each curve corresponds to a
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Fig. 4. The critical temperature versus the azimuthal critical
field curves of a solid ey inder in a non-s uperconducting metalhc
malrix, The interoepls increass according o the values of the
extrapolation length such that 8/8 = 0.0 for the lowest curve,
increasing in unit steps up to 88 = 9.0 for the highsst curve,

different value of the extrapolation length. Going
up the temperature axis along £ =0 the values of
the extrapolation lengths are such that B/ = 0.0
for the lowest curve, increasing in unit steps up to
9.0 for the highest curve. The intercepts show a
variation of the critical temperature with B/8 for
zero magnetic field, in exact agreement with the
results obtamed by Masale et al. [6] and by Takacs
[7]- These graphs show an overall decrease of the
critical temperature with an increase of R/ 4, which
1s more pronounced for smaller values of the ex-
trapolation length. The effect of metalhe cladding
can also be seen i the relation of the flux-entry
points with the field, shown in Fig. 5. The value of
R/6 vanes from R/6 = 0.0 for the highest curve
and mereases in steps of (L5 for the more depressed
curves, going down the &R axis, up o B8 =210
for the lowest curve. The extent of the suppression
of superconductivity increases with the decrease of
the extrapolation length. This 15 accompanted by a
decrease of the flux-entry points as the applied
field 1s increased. This behaviour is typical of the
other systems referred to in the text, namely a
cylmder or a thin film in a parallel applied mag-

4
ff- [0, (LA 50T |
3_
kR
2_
1_
a 1 1 T T
a 2 4 f & =] 1@

Fig. 5. The Auxoid sigenvaluss as lunctions of the azimuthal
critical field of a solid cylinder in a non-superconductmg me-
tallic matrix. The curves stack-up according to the decreasing
values of the extrapolation length, The values of 8 /& at = 4.0,
say, are 0,0 for the highest curve, increasing in stepsof 0.5 up 1o
20 for the lowest curve,

netic field. The curves corresponding to small
vitlues of R/é in Fig. 5 show promment peaks as a
function of the field. These peaks, in fact, occur at
the points of mflection on the e-f curves and are
rapidly smoothed out as B/ increases. A simular
behaviour, namely the quenching of the Little

Parks osallations when B/d 15 increased, has been
noted for a thin-walled hollow cylinder in a par-
allel magnetic field [6].

4. Current-carrying cylindrical shell

The system considered here 15 a cylindrical shell
of mner and outer surfaces bounded by By and R,
respectively. The current-induced magnetic field
mside the shell may be written as follows:

B, !

B(e) =y -(p— Ri/p), (16)
)

where y=1/{1 — ) in which n = R}/R3, which

may be regarded as an index of the shell thickness.

The vector potential associated with the magnetic

field n Eq. (16) 1s given by:
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B, [p
A = %, [%—Rf |n(pl.f'le} i=1or2.

(17
For wery fine filaments, of thicknesses much
smaller that the G-L coherence length, there can
hardly be spatial variations of the order parameter.
In that case, the constant o approximate result 15
adequate for the determmation of the critical field
[19]. In fact, n thecase of a very thin-walled hollow
eylmder m a parallel magnete field, the approxi-
mate and the full numerical results were found 1o
be m exact agreement [6). The form of the magnetic
field given by Eq. (16) 1 bound to be farly con-
stant across the thickness of a very thin cylindrical
shell. In view of this, any spatial varations of
that may arise as a result of changes of the super-
conducting phases across the shell thickness may
be neglected. The constant v hmiting form of the
temperature 15 obtamed on miegratmg the G-L
equation across the shell thickness as follows:

f 2 o= f|k| 28 4. (18)

3.15«:

€2
e, 1@

@, aa

@ 1 z fc;j 4 B

Fig. 6. The ea—f5 curves of a current-carrying cylindrical shell.
Each curve corresponds 1o a different thickness of the shell
indicated thers as values of n = &7 /83, The shell thicknesses, for
example at © = 50, are such that n = 0.9 for the lowest curve,
decreasing in steps of 0.1 down o 0.5 for the topmaost curve,

Carrying out the mtegration, the limiting form of
the temperature-field relationship 1s found as:

e2 = Y2RE + Lk R [1 4 30 + 20y Ing £
+ R+ 5yt + 0"y Ing(3 —Ling)| 5.
(19}

where the subscripts on e and findicate scaling of
the defimtions of the temperature and the field
given by Eq. (8) n terms of Bz, Fig. 6 shows the
ea—fr curves of thin-walled hollow cyhinders of
shghtly different thucknesses. In Fig. 6 5 = 0.5 for
the highest curve, increasmg in steps of 0.1 up to
0.9 for the lowest curves. It 1s clear from Fig. 6 that
the critical field 1s significantly enhanced as a result
of decreasing the thickness of the superconducting
cylindrical shell.

5. Current-carrying core enveloped by a cylindrical
shell

An idealzed system might be a minute super-
conducting current-carrying core of rads #, and
of a judiciously higher critical temperature than
that of the superconducting cylindrical shell which
envelopes it. In prinaple, therefore, the cylindrical
shell should reach the field-induced transition o
the normal state at lower fields than the core. A
current mside the core generates a magnetic field
whose vector potential in the region p > Ry may be
written as:

Az = —BRa[1 +2In(p/R)], i=Tlor2. (20

Following the same analysis as for the system
discussed in Secnon 4, the hmiting form of the
critical temperature as a functoon of the critical
azimuthal field 1 found to be:
€2 = JIR + kel RonInnlfa + (1 — ny n? g £,

21

In deriving Eq. (21}, although not necessary a
prior, 1t was again assumed that the magnetic field
15 farrly uniform across the thickness of the very
thin shell.

The field-temperature curves for this system are
shown in Fig. 7 for the same parameters as for Fig.
6. The results here show a very similar behaviour
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Fig. 7. The same caption as for Fig, 6 except that this is for a
cylmdrical shell claddng a currentcarrving core,

as those of a current-carrying shell. It s seen from
a comparison of Figs. 6 and 7 that, for the same
thickness, the critical field for this system 15 sig-
nificantly lower than that for the current-carrying
shell for the same given critical temperature. This
may be anticipated on realiang that the mduced
magnetic field mcreases with the ncrease in radial
distance in the case of a current-carrying shell
while the reverse is true in the case of a current-
carrying core cladded with a thin metal sheet. To
reach the critical field near R, of the shell cladded
core a larger current 15 needed. Only the surface
bounded by R» is at a further distance from the
core and the field there is relatively weak.

6. Conclusions

The lnearized G-L equation for the order pa-
rameter is solved to obtain the azmuthal critical
field of some specific type 11 superconducting sys-
tems in form of cylindrcl filaments. The applied
magnetic field 15 thought to be generated by
passing a current along the axis of the supercon-
ducting wire. In the thought experiment, the cur-
rent 1s increased until it generates a magnetic field
large enough to induce the transiion from the

superconducting state to the normal state. The
surface nucleation field Ha(g). needed to induce
this transition, has been calculated for the fol-
lowing systems: (a) lree-standing solid cylinder, (b)
solid cyhnder m a non-superconducting metallic
matrix, (¢} current-carrying thin-walled hollow
cyhinder and (d) cylindrical shell cladding a cur-
rent-carrying core. It is worth noting that the re-
sults of the investigations carried outl are wery
similar to those obtained for the “reverse”™ prob-
lem for which the full G-L equation was employed
[12]. For the same geometrical structures, the re-
sults point to a significantly higher critical azi-
muthal field compared to the parallel critieal field.
The results of this study pomt towards configura-
tions which may have substantial advantages in
the generation of high magnetic fields, for ex-
ample, in superconducting electromagnets. Verifi-
cation of these results should be possible n
conventional experiments such as those of resis-
tvity measurements or with the newly developed
micro-magnetization measurement technigue [17].
Mo specific concusions can be drawn from these
results about high-T, superconductors in applied
magnetic fields because only 1sotropic materials
are considered. With the versatility of present-day
experimental techniques, it may be worthwhile
extending the discussed mvestigations to high-T,
miterials.
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