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The Earth Observing-1 (EO-1) satellite acquired a sequence of data in 2001 and
2002 that highlighted the annual flooding of the lower Okavango Delta. The
data were collected as part of the calibration/validation programme for the
Advanced Land Imager (ALI) sensor on the NASA EO-1 satellite. The primary
purpose of this study was to compare the capability of ALI to that of Landsat
ETM+ for large-scale mapping applications in the Okavango Delta. While the
extent and inaccessibility of many areas of the Delta make application of remote
sensing attractive, the availability of data with adequate spatial and spectral
resolution has limited the characterization of the complex patterns of land cover
and geomorphology in the Delta. Initial analysis of the ALI data via supervised
classification clearly showed macro-flood features, delineation of downstream
channel flow areas, and lateral-downstream inundation of the floodplain. These
patterns and the proportions of flooding of the channel compared to that of the
floodplain (impoundment) varied annually, from the wetter seasonal swamps
through the drier seasonal and occasional swamps. Consistently higher
classification accuracies achieved using ALI data relative to ETM+ data are
attributed to the higher signal-to-noise ratio and the increased dynamic range of
the ALI data.

1. Intreduction

Wetland ecosystem processes comprise a critical element of Earth system science,
since they are nch in productivity and species biodiversity (flora and fauna); they
function as water storage and pollution buffering svstems; and thev often provide
resources for livelihood to local communities and villages (Keddy 2000). The
Okavango Delta in northern Botswana 1s one of the world’s largest freshwater
wetlands (~20000 km®). The region is typified by a semi-arid climatic regime with
an annual average rainfall in Maun of 460 mm. Much of the rainfall is localized
during the rainy season, with extended periods of drought during the dry months.
Here, flooding occurs during the winter dry season (June through August) due to
rainfall runoff from the Angolan highlands. Much of the vegetation 15 dormant

*Corresponding author. Email: amy(@csr.utexas.edu

International Jownal of Remote Sensing



4322 A. L. Neuenschwander et al

during the winter season, so vegetational response is essentially in the form of
regeneration.

The assessment of flood responses in wetlands may be tenuous, particularly n
such areas as the Okavango, as hvdrologic sub-environmental adaptive factors
differ, thereby contributing to unigue ecosvstem development (Ringrose et al. in
press b). Much of the Okavango Delta, a relatively protected wetland under the
Ramsar Convention, falls within the Zambesian regional centre of endemism (White
1983) and comprises extensive floodplains that may be permanently, seasonally,
occasionally, or rarely wet (MLGLH 1989). At local scales, the response of
vegetation along floodplains 1s characterized by heterogeneity due to hvdrological,
edaphic and land-use factors (McCarthy and Ellery 1993, McCarthy er al. 1997,
Ringrose er al. 1997). Varving degrees of disturbance (e.g. elephant impacts) and
local climatic factors are also important (Wolskil er al. 2002). Previous work
provides evidence that much of the —97%% water loss from the Okavango can be
attributed to high rates of evapotranspiration (1000-1500mmyear™ '), thereby
resulting in characteristic geochemical precipitates (within clastic sediments)
(McCarthy er al. 1998). However, these theories have not vet been tested on a
large spatial scale due to the expanse and general inaccessibility of the Delta.

Much of the Delta is a designated wildlife preserve, and tourism is limited.
Further, roads are impassable during both the summer rainy season and winter
flooding, thereby making field-based studies difficult to conduct. Thus, remote
sensing provides a primary data source for denving information about the
vegetation and hydrologic regime of the area. Vegetation grows in patches, exhibits
seasonal variation, and changes in response to subtle topographic variation on a
scale of metres. Thus, medium-/high-resolution multispectral space-based data
provide suitable sources for regularly monitoring flood events and associated
vegetation responses. While results of previous Landsat Thematic Mapper based
investigations (Ringrose er al. 1988, 1997, 2003, 2005) were promising, the increased
dyvnamic range. improved signal-to-noise ratio, and additional multispectral bands
provided by the Advanced Land Imager (ALI) instrument on the NASA Earth
Observing-1 (EO-1) satellite potentially provide improved capability for character-
1izing the ecology of the Delta and mapping flood events. This includes tracking the
progression of the flood toward the distal regions of the Delta and mapping and
characterizing the response of floodplain vegetation before, during, and subsequent
to inundation.

Specific aims of the research reported here were as follows:

* o investigate the contribution of additional bands in the ALI multispectral
data for discriminating land cover compared to Landsat ETM +; and

* to investigate variability in annual flood patterns of the lower Okavango Delta
during the EO-1 mission.

2. Study area

The EO-1 satelite acquired data over a study area centred on the Harry
Oppenheimer Okavango Research Center (HOORC) field site located on Chiefl's
Island (within Landsat ETM+ 174/74). This study area is approximately 2400 km?
in size and 15 shown in figure 1. The vegetation in the study area 15 characterized by
seasonal and occasional swamps as well as drier woodlands. Seasonally flooded
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Figure 1. Map of Okavango Delta depicting the ETM + and ALI study area.

grasslands (also known as seasonal swamps) cover the primary floodplain and flood
annually. Occasional swamps flood at 1- to 10-year intervals and comprise primarily
grasslands, but include some shrubs and other woodland species, as there is
adequate time for these vegetation types to develop between flooding events.

The land cover classes in the study area (table 1) are modified after the Botswana
Ministry of Local Government Lands and Housing ecological zonation for the
Okavango Delta (MLGLH 1989). The floodplains of the seasonal swamps contain
large stands of sedges including Schoenoplectus corvmbosus and Cyperus articulatus.
Also common in the seasonal swamps are reeds (Phragmites communis), bulrush
{(T'vpha capensis), and grass ( Miscanthus junceus). The secondary floodplains within
the seasonal swamps are typically covered by large grasslands that include species
such as Panicum repens, Sorgastrum friesii, and Imperata cylindrica. The drier
portions of the occasional swamps also contain dry grass species such as Panicum
repens, Andropogon, and Stripagrostis uniphimis, as well as shrubs such as Pechuel-
loeschea leubnitzige. The woodlands, tvpically dominated by Colosphernum mopane,
Combretum imberbe, Terminalia sericea, and Acacia spp., are located on drier soils.

3. Data and methods

3.1  Remotely sensed data

The NASA Earth Observing-1 (EO-1) satellite was launched in November 2000 as a
demonstration for several technologies, including the Advanced Land Imager (ALI)
sensor, a multispectral pushbroom prototype for the Landsat Data Continuity
Mission (LDCM). The EQO-1 satellite orbits at 705km altitude and follows
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Table 1. Definition of land cover classes identified in AL Imagery (modified afier MLGLH

1989).
Ecosystem Definition Main species
Morth riparian zone Linear fringe bordering Ficus sycamorus, Acacia spp.,
islands and channels Hyphaena petersiana
South riparian zone Linear fringe bordering Combretum imberbe, Lochocarpus
islands and channels capassa, Croton megalobotryis
Mopane shrublands  Stunted form of mopane Colophospernum mopane

on fine soils
Mopane woodlands  Monospecific close to wetland  Colophospernum mopane
edges mixed in drier soils

Woodland mix Mixed woodland species C. mapane, Terminalia sericea
on drier soils Combretum imberbe
Acacia mix Sandier areas including Acacia erioloba, Acacia foriillis,
woodlands former floodplains Terminalia sevicea
Acacia woodland Ecotone between riparian Acacia spp.

on Chief™s Island  zone and C. mopane on edge
of Chiels lsland

Acacia shrubland Extensive areas of acacia, Acacia spp., Panicum spp.,
on Chiel™s lsland  shrubs such as pechuel and Pechuel-lpeschea lewbriiziae
CrASSCs Andropogon spp.
Acacia grassland Extensive grasslands with Acacia spp., Panicum spp.,
on Chiel™s lsland  less acacia and shrubs Pechuel-loeschea lewbritziae,
Andropogon spp.
Grass, mopane, Extensive areas of dry Colophospernum mopane,
pechuel mixed grasses/shrubs with occasional  Pechuel-loeschea lewbritziae,
shrublands mopane. Occurs on drier soils  Panicum spp., Andropogon spp.
Grass, pechuel Extensive areas of dry grasses! Pechuelloeschea leubritziae, Panicim
mixed shrubland  shrubs spp.. Andropogon spp.
lsland interior Infrequently flooded areas of  Cyperws laevigatus, Sporobolus
STASSES higher salinity/alkalinity spicatus
Reeds Frequently flooded grasses Phragmites australis, Cyperus
adjacent to channels articulatus
Backswamp Frequently flooded grasses Cwnadon doctylon, Hyparrheria spp.
Floodplain Tall grasses seasonally Cwnadon doctylon, Hyparrheria spp.
zrasses | inundated
Floodplain Short grasses seasonally Cwadon doctylon, Imperata
zrasses 2 inundated cylindivica, Cymbopogon excavaius
Floodplain Infrequently flooded extension  Pawnicum spp., Andropogon spp.,
erasses 3 of the occasional swamps Aristidia spp.
Aquatic vegetation  Mainly floating aquatic Vossia cuspidata, Miscanthus funceus
vegetation

approximately 1 min behind the Landsat 7 satellite in the (Landsat, EO-1, SAC-C,
Terra) AM constellation (Ungar er al. 2003). Because the ALI was developed as a
technology demonstration instrument, and not an operational land imager, only one
quarter of the ETM + swath width 1s covered by an ALI acquisition (~37km)
(Ungar er al. 2003). However, the EO-1 satellite may be rolled to point to a specific
location to achieve coverage anywhere in the Landsat swath.

The primary charactenistics of the ALI reflective bands are listed in table 2 and
contrasted with the Landsat ETM + reflective bands. ALT does not have a thermal
band, so Landsat ETM + thermal data were not utilized in this studyv. Compared to
ETM +, the ALI sensor has increased dynamic range (12 bit vs. 8 bit), improved
signal-to-noise ratio (four to 10 times relative SNR, depending on the band
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Table 2. Comparison of Landsat ETM + and ALI spectral information.

Landsat ETM+ ETM+ wavelength ALL 30m ALT wavelength
30m bands (nm) bands (nm)
Ip 4324351
1 450-520 1 458-511
2 530-610 2 332-602
3 630649 3 632688
4 TR0-900 4 775-805
4p Bdd-B88
Sp 12001288
3 15301730 3 1554-1725
7 2090-2350 7 20902362

(Mendenhall er al. 2002)), and additional bands in the blue (442 nm), the near-
infrared (866 nm), and the short-wave infrared (1244 nm) portions of the spectrum.
The EO-1 mission was originally planned to be 1 year in duration; however, the
satellite continues to be operational. A series of eight ALI scenes spanming the 2001
and 2002 QOkavango flooding season was acquired by NASA for the EO-I1
calibration/validation program. Five cloud-free ALI scenes (31 May, 16 June, 11
July, and 19 August 2001 and 16 September 2002) were analysed in this study. The
ALI data acquired in 2001 and 2002 provide the best temporal sequence obtained to
date for mapping and monitoring the Okavango Delta. Fortunately, near cloud-free
conditions occur continuously during the flooding season, thereby resulting in
excellent quality imagery.

3.2 Dara pre-processing

Because the ALI sensor is a technology demonstration instrument, additional pre-
processing of the Level 1R data product (relative to what is necessary for Landsat
ETM +) is required prior to analysis (Goodenough er al. 2003). The two-
dimensional arrays of detectors on ALl populate four Sensor Chip Assemblies
(SCAs) (figure2), thereby resulting in four stnps of data that must be radio-
metrically balanced and mosaicked. The physical offset of the bands on each SCA
necessitates alignment of bands, as well as of SCAs. Striping in data acquired by
pushbroom sensors is typically caused by inter-detector variations in calibration,

Figure 2.  ALI sensor chip assembly (SCA) (from Ungar et al. 2003).
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failed or ‘bad’ detectors, transient environmental conditions, or internal svstem
anomalies. Depending on the source of the striping, a partial or complete column is
affected and is either totally unusable or requires normalization. Failed or ‘bad’
detectors result in a full column of null data at their respective position in the array.
Once identified, their effect can be comrected readily as they occur in all data. In this
study, data in columns () associated with bad detectors were removed and replaced
by the average of the adjacent (4 1) columns in the same row.

Intermittently and partially streaked columns are associated with transient
phenomena and can often be detected and normalized to produce usable data.
Columns contaiming these data were detected in each scene using a two-step process.
First, the difference between sample means of data from adjacent columns was
compared to a threshold to identify candidate columns containing ‘problematic’
data. Individual pixels within these candidate columns were flagged if their digital
number (DN) value was sufficiently different from that of the immediate (j+1) and
(£ 2) neighbours. Groups of at least n (user specified) consecutive pixels within a
column were considered as streaks and assigned to an associated streaked subset
(Goodenough et al. 2003). The streaked subsets were then ‘corrected’ by normalizing
columns such that their means and variances matched those of a local moving
window centred over the column, as shown in figure 3. For this study, six con-
secutive pixels were flagged as a streak and corrected with a local window of size
10 % 5 pixels (Neuenschwander 2003). In addition to detector corrections within
individual strips, calibration-based differences between the four SCAs must be
normalized. An empirical correction to match the mean of the 10 pixel overlap
region between successive SCAs was applied to SCAs 1-3, assuming that SCA4 was
relative ‘truth’.

A simple full pixel shift to provide approximate band-to-band co-location is
provided in the Level 1R product, but was not considered adequate for analysis of
this landscape where features change within tens of metres. Further, adjustments are
scene-dependent because the satellite can be pointed to image a specified target. A

(en) (h)

Paﬂinlry stresked columns

Figure 3. Example of ALI band 7 (&) partially streaked columns due to inter detector
calibration problems and (b) after correction.
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standard pre-launch line of sight map (LOS) surveying the locations of the
individual detectors on the amay was developed to map the energy received on the
focal plane to each detector. A method which incorporates updated LOS maps for
the detectors that was later developed by MIT Lincoln Labs and the USGS EROS
Data Center (EDC), was used here to align and mosaic the ALI data { Mever er al.
2001, Storey er al. 2004). Map-ornented data were then obtained by combining LOS
maps with the GPS and altitude information of the satellite. The final
georeferencing was achieved by simple translation of the resultant image to match
a Landsat ETM+ basemap scene. All scenes were georeferenced to a UTM 34 §
projection with a WGSE4 ellipsoid. Both ALI and ETM + data were corrected for
sun angle but were not atmospherically corrected prior to supervised classification
of each image.

3.3 (Tassification methodology

The Bavesian Pairwise Classifier with Feature Selection (BPC-FS) method was
utilized to classify the ALl and Landsat ETM + data. The supervised method, which
is fully described in Crawford er al. (1999), utilizes a class-dependent band selection
technigque n conjunction with a Bayesian pairwise classifier framework. The method

decomposes a multiclass problem with C(>2) classes into a set of E) simpler two-
class problems. For each pair (i, j) of classes (1 <i<lj< (), a separate classifier is
trained to distinguish between those classes. The method sequentially selects the
most relevant bands to distinguish between each pair of classes based on their
incremental contribution to either a log-odds relevance function or to classification
accuracy, stopping when the relative change associated with the most recently
selected band 1s less than a user-selected value. Each observation 1s labelled using
every pairwise classifier. The ultmate class label for each observation is then
selected either via voting or by the maximum Bavesian posterior probability rule
applied to the postenor probabiliies of the imdividual pairwise classifiers. The
approach not only simplifies the origmmal problem and potentially improves
discrimination capability between pairs of classes with overlapping distributions,
but also provides the flexibility of using any type of classifier and any band or
combinations of bands to classify each class pair (i, j). The BPC-FS method typically
vields classification accuracies that are higher than the traditional maximum-
likelihood classifier, which labels each pixel as 1 of C classes in a single step, as it is
better able to tune the bands and decision boundaries to each class pair. It also
provides useful domain mformation on the required number and value of band
combinations lor discriminating between classes. This aspect of the classifier
facilitated comparison of the results obtained using ALI and ETM + data, as well as
evaluation of the relative contribution of the additional ALI bands.

4. Results
4.1 Land cover classification

The four ALT data sets from 2001 (31 May, 16 June, 11 Julv, and 19 August) and a
single ETM + scene (12 August 2001) were first classified as members of the 23 land
cover classes found in the seasonal and occasional swamps and drier woodlands
listed in table 1. Training data were selected manually using a combination of GPS
located vegetation surveys, aerial photography from the Aquarap (2000) project,
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and 2.6 m resolution IKONOS multispectral imagerv. Data sets were randomly
sampled such that 50% of the data points were used for training, and 50% were
reserved for testing the classifier. In order to compensate for bias associated with co-
location of training and test data within patches, additional sites were selected and
used for an independent determination of accuracies. These accuracies, which are
lower than those of the traming and test data, are reported in this paper. It was
necessary to select training/test data from each ALI acquisition, since vegetation
exhibited some seasonal spectral variation, and land cover conditions changed due
to the progression of the flood front and burning that occurred between
acquisitions. However, where possible, the training data were selected from the
same geographic locations for the entire sequence of imagery.

Owerall classification accuracies listed in table 3 are consistent for all 23 land cover
classes spanming the four ALI data sets. The producer and user accuracies for each
class are also detailed in table 3. Figured4 shows the resulting land cover
classification map obtained from classifving the 2001 ALI sequence using the
BPC-FS method with all the ALI bands ({1p-7) as candidate inputs. The lower
accuracy for the 31 Mayv data resulted from the poor discrimination of the acacia
grasslands (class 9), where the majority of pixels were misclassified as dry grasses
iclass 12). The ETM+ data were also classified using the BPC-FS method. Most
notable are the higher overall classification accuracies for the ALI data (—80%%)
compared to those of the 12 August ETM + data (~68%) shown in tabled4. This
increase is attributed to both the higher signal-to-noise ratio and the increased
dvnamic range of the ALI data. Visual evaluation of the ETM+ classification
output shows that the secondary flood plain (flood plain3—class 19) was often
misclassified as interior island grasses (class 13). Also, the backswamp class (class
16) was often confused with water, causing the total flood extent to be
overestimated.

As stated previously, the ALI sensor has three additional reflective bands relative
to ETM +. ALI band Ip (442nm, blue) was added for water quality applications.
ETM + band 4 was divided into two bands, ALI band 4 and ALI band 4p. to avoid
the water absorption feature centred at 825 nm. ALI band 5p (1244 nm, shortwave
infrared) was added to potentially improve discrimination of land cover. Of particular
interest to the study was evaluation of the contribution of these additional bands to
land cover mapping in the Delta. The BPC-FS provides some capability to determine
the relative contribution of a band to a pairwise classifier in terms of whether a band
15 selected and the order in which it 1s selected. In multiple runs of the BPC-FS per
scene, the band selection proved to be guite stable, with nearly the same bands
selected for each class pair in most runs. The total number of bands selected for a
representative single run 15 hsted i table 5, and the number of times a band was
selected as the first band, 1s listed in table 6. The bands selected for the 19 August ALI
and the 12 August ETM + data are histed in table6 for comparison. The band
selection ratio hsted in tables5 and 7, which 15 computed as the ratio of the total
number of bands selected to the total number of class pairs, provides a simple
indicator of the typical number of bands selected for classification of a given data set.
The total number of tmes a band 15 selected. as well as the number of times a band 15
selected first, 1s an indication of the importance of that particular band for class
discrimination. A lower band ratio would indicate that Fewer bands were required to
discrimmate the same class pairs. The band ratio for the August ALl scene was 1.66,
whereas the August ETM + band ratio was 1.91. The BPC-FS tyvpically required only



Table 3. Classification accuracies for 2001 ALI scenes.

31 May ALIL 16 June ALI 11 July ALL 19 August ALIL

Producer Lser Producer User Producer User Producer User
Class aAccuracks ACCUTacies accuracks accuracks ACCUracies ACCUracies ACCUT acies accuracks
Morth riparian 74.32 51.64 67.92 55,10 57.80 . 110 649 86 5530
South riparian 79.19 59.14 4.4 T8.12 87.16 91.79 51.35 8441
Mopane shrublands 8644 96,23 B8.55 7989 71.37 0474 t6.51 94,70
Mopane woodlands 84.85 42.64 62.22 70,89 .34 71.72 B2.55 100,00
Acacia woodlands 90.43 B7.18 90,54 92 41 100.00 8053 100.00 95097
Woodland mix 96.67 8503 9202 84.27 8690 92 65 90.00 9900
Acacia woodlands on CI 4912 T70.59 52.82 61,98 8322 57.21 49 67 3304
Acacia shrublands on Cl 37.70 30,440 . 88 46.32 0,16 75.00 42.31 56.20
Acacia grasslands on C1 17.24 37.04 8525 77.61 84,28 92.41 8571 7143
Mopane/pechuel/grass mix 95.92 87.04 72.88 68,25 91.48 6. 14 97.95 7222
Grass/pechuel mix 97.28 96,62 5817 06,13 ). 66 8684 98.71 2947
Diry grasses 68,57 I8.87 69,54 T6.09 52.04 61.54 5906 5500
lsland interior 84,50 O8.83 75,66 95.04 53,85 T6.36 58.74 87.33
Exposed soil 84.68 f9. 54 03 88 T6.24 04,97 9 50 8060 77.509
Beeds 97.08 9595 88.62 96,10 0043 06,635 90.91 09494
Backswamp 91.59 90.39 55,44 85.44 73.10 93 81 . 34 97635
Floodplain grasses 1 35.37 B7.88 T80 87.16 12.67 . 77 96,95 T1.75
Floodplain grasses 2 Bl.65 95.24 B 48 G440 8032 98,64 87.05 8571
Floodplain grasses 3 39.02 51.61 50,93 65,69 T6.35 a6.36 73,14 6531
Water 91.28 97.27 9043 106,00 00,55 100,00 100,00 100,00
Aquatic vegetation 83.07 9322 96.20 86 Hao 04,08 100.00 94,70 90 .45
Firescarl 53,95 100.00 T8.00 9750 MSA MSA 100.00 902
Firescar? 97.53 9. 00 84.51 00,91 5263 88.20 08.31 9831
Overall 74901 7960, 80.30%: 80.80%
Kappa 0.7373 0.7871 0.7933 07984

(0E TTVAFS
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Figure 4. Classification of 2001 ALl data over study area using BPC-FS algorithm for (a) 31
May, () 16 June, (¢) 11 July, and () 19 August.

one or two bands to distingwish between each class pair for ALIL as shown in table 5.
Band 5p was selected more frequently than band 5 and was more often the first band
chosen as there was greater separation of class signatures m these scenes in ALI
band 5p than in ALI band 5. Bands 1 and 2 (480nm and 567 nm, blue and green
portion of the spectrum) were selected least frequently. However, they were
typically the dominant band for discriminating tree dominated classes. Despite its



SAFARI 2000

4331

Table 4. Classification accuracies for ETM + (12 August) and ALL (19 August).

19 August 2001 ALL

12 August 2001 ETM +

Producer User Producer User
Class accuracies accuracies accuracies accuracies
MNorth riparian 69,86 55.30 36.36 38.78
South riparian 81.35 54,41 .25 3062
Mopane shrublands 6651 94.70 .07 76.51
Mopane woodlands B2.55 10000 964 6284
Acacia woodlands 100.00 95.97 916 71.08
Woodland mix 90.00 99.00 71.82 Bl a4
Acacia woodlands on Cl 49.67 33.94 49.67 29.76
Acacia shrublands on C1 42.31 56.20 .07 43.36
Acacia grasslands on C1 8571 T1.43% 6571 S6.44
Mopane/pechuel/grass mix 97.95 72.22 91.10 79.17
Grass/pechuel mix 98.71 89.47 91.61 84,52
Dry grasses 59.06 55.00 46.98 61 .40
lsland interior 58.74 87.33 30.04 44.37
Exposed soil 8060 77.59 Bl.47 7a.60
Reeds 90.91 .94 79.39 8086
Backswamp B, 34 97,65 i 34 5357
Floodplain grasses | 96,95 71.75 0794 Bl.81
Floodplain grasses 2 B7.05 8571 72.54 6222
Floodplain grasses 3 73.14 b5.31 30.29 2978
Water 100.00 100.00 99.63 99.26
Aquatic vegetation 94.79 99.45 95.83 98.92
Firescarl 100,00 98.92 9674 05.89
Firescar? 98.31 98.31 9n.61 95.00
Overall BB 67.87%
Kappa 07984 0.663d4

low signal-to-noise ratio, band Ip was selected in all ALI scenes. Additionally, it
contributed to improved classification accuracies, especially for woodland dominated
classes. as determined by experiments from which it was omitted.

4.2  Flood mapping

Investigation of the variability in annual flood patterns of the lower Okavango
Delta was a primary science objective of the study. The Okavango experiences
several months with no rainfall during the dry winter season, vet because of the

Tahle 5. Frequency of band selection by BPC-FS classifier for 2001 AL experiments.

AL band 31 May 1o June 11 July 19 August
Ip 36 35 56 34

1 26 19 24 3

2 21 21 3l 35

3 43 67 Ba 63

4 a0 Bl a7 28
4p 35 40 37 49
Sp 82 47 52 63

i a0 3l 21 40

7 a7 77 KT 70
Total 400 401 304 421
Band ratio 1.588 1.58 1.57 1.66
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Table 6. First bands selected by BPC-F5 classifier for 2001 ALIL experiments.

ALL band 31 May la June 11 July 19 August
lp 20 22 42 22
1 12 13 14 38
2 12 16 21 22
3 18 41 41 44
4 40 50 28 14
ap 25 21 26 32
ap 36 28 26 42
5 34 14 8 14
7 36 48 23 33

temporal lag of upstream rainwater, the Delta floods during this dry season. Thus, it
15 safely assumed that the surface water detected in this study 1s a result of seasonal
flooding, and not localized precipitation. The progression of the 2001 flooding event
in the studv area 1s evident in the classification maps derived from the ALI data
(figure4). The variability in inter-annual flood patterns is clearly visible in figure 5,
which depicts corresponding total flood cover in 2001 and 2002 derived from the
ETM + sensor. The total annual flood extent obtained from the ALI and ETM +
sensors was similar visually and in total area, as shown in table 8. Here, the total
water area was determined as the product of the sensor resolution and the number of
pixels classified as water. Stmilarly, the total inundated area was computed as the
product of the sensor resolution and the sum of the pixels classified as water or
backswamp. The ALI data used in this comparison were acquired on 19 August
2001 and 16 September 2002, and the ETM + data were acquired on 12 August 2001
and 31 August 2002, Backswamp was often misclassified as water using ETM +
data, which in turn overestimated the amount of water present in the Delta. From
the estimated flooding extent, it appears that the total quantity of water flowing into
the study area was approximately the same in 2001 and 2002. The primary difference
between the flooding for these two vears was exhibited in the spatial distribution and
flooding patterns. The amount of water derived from analysis of the ALI data 1s
consistent from 2001 to 2002 (~124 km?), but differs for the ETM + data (~232 km?
in 2001 and 156 km? in 2002). which is partially attributed to the misclassification of
backswamp as water in the ETM + data. The total inundated area (water and

Table 7. Frequency of total bands selected by BPC-FS for August 2001 ALL and ETM +

data.

ALI band ALIL 19 August ETM + band ETM + 12 August
Ip 34

1 37 1 43
2 33 2 56
3 B3 3 91
i 28 4 137
4p 49

ip ]

5 40 3 Gh
7 70 7 b
Total 421 483

Band ratio 1.66 1.91
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Figure 5. Total flood cover map derived from 12 August 2001 and 31 August 2001 Landsat
ETM + data for study area.

Table 8. Class areas for inter-annual flood map (km?).

Total inundated area [water

Total water area (km?) and backswamp] (km?)
ETM+ derived
12 August 2001 232 257
31 August 2002 156 2000
AL derived
19 August 2001 122 257

16 September 2002 124 158
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backswamp combined) of ALI and ETM+ was 257 km? in 2001. The peak of the
flooding usually occurs in mid-August, and water recedes from the backswamp first.
This 1s likely the primary source of the differences in total water cover using ETM +
data from August 2001 and September 2002, respectively.

5. Discussion

While pre-processing the ALI data mitigated radiometric and geometric
distortions, it may also have contributed to some classification errors. For example,
varying pointing angles can result i shight misalignment of data within the
overlap regions of the SCAs. The potential of misalignment can have a significant
impact on land cover mapping in the Delta where some land cover classes
{e.g. riparian and reeds) occupy narrow corridors. Similarly, the limitations of the
radiometnc adjustment procedure are acknowledged. However, classification
accuracies obtained using the ‘corrected” ALI data were superior to those
obtained using ETM + data. This is important as improvements in land cover
classification can lead to mmproved estimates of land surface parameters, and
thereby better understanding and modelling of land surface processes. In addition,
accurate determination of land cover in the Delta is critical to understanding the
impacts of disturbance regimes (e.g. flooding, fire, or grazing) on ecosystem
functioning.

Reeds and sedges were difficult to discriminate in a previous classification of
Landsat ETM + data acquired over the Delta (Ringrose ef al. in press a). In the
current study, high classification accuracies were achieved for reeds (class 15), and
better separation of the reeds and flood-plain vegetation from the rpanan class. as
measured by the accuracies from the pairwise classifier, occurred in ALI data than
in Landsat ETM + data. This improvement 1s critical, as the riparian vegetation 15
thought to be a significant factor in the evapotranspiration processes in the lower
Delta. It 15 also noteworthy that ALT band 5p was alwavs selected by classifiers
involving the difficult reed and water classes. Discrimination of riparian vegetation
actually improved in experiments where band 5 was excluded, whereas 1t was
confused with floodplain and reeds when band 5 was included. As noted previously,
the classifier also had difficulty separating water from backswamp using the ETM +
data as input. For these two class pairs, bands 7, 3, and 5 were selected by the
classifier for ETM + data, whereas bands 5 and 3 were selected using the ALI data.
Owerall, comparable spectral bands were selected for discriminating given pairs of
classes in ETM + data. For both ALI and ETM +, additional bands were required
for problematic classes such as north nparan (class 1) and reeds (class 15). Further
investigation of the discrimination of spectrally similar land cover tvpes 15 planned
with EOQ-1 Hyperion hvperspectral data, which are acquired concurrently on the
same platform.

Spatial vanability of the flooding patterns and 1ts impact on biota of the Delta
are not well understood, but are critical for management of the ecosvstem.
Although hydrologic models have been developed which model the inflow
and outflow from the Delta, they have not focused on the spatial patterns of the
seasonal flooding. While the aggregate quantity of annual rainfall upriver is
important, much of the varability in flood pattems is associated with the shallow,
anastomosing channels that comprise most of the Delta. In addition, information on
the evapotranspiration process 1s essentially unknown for the tributaries within the
Delta (Ringrose in press a). The inter-annual flooding differences observed in the
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ALI imagery include the Marophe Channel, which did not flood in 2002, and the
lower Boro River. The floodplains surrounding the Boro River were flooded more
extensivelv in 2001, whereas in 2002, the water was confined to the primary
channels. It is speculated that some of the differences in the inter-annual vanability
in spatial distribution of flood waters can be attnibuted to buming or other factors
that affect the vegetation and impedance to the flow of water. This conjecture,
however, cannot be tested until analvsis on additional intra-annual data from 2002
and 2003 1s completed.

0. Conclusions

This preliminary study in the use of EO-1 multispectral data, for both mapping land
cover charactenstics and studving phenomena related to annual flooding, indicates
that the improved spectral characteristics of ALI data were useful. The supenority
of EO-1 ALI data was manifested both in higher classification accuracies and in
visual analysis of the multispectral imagery. The study also indicates that ALI band
5p. centred at the 1244nm wavelength, was a valuable addition to the ALI
instrument. It was often selected in the BPC-FS and provided better separation of
land cover classes than ALI band 5. Because ETM + band 4 was essentially divided
into two bands for the ALI (band 4 and 4p), no significant improvements in
classification were expected, since both bands could be selected by the BPC il their
individual contributions were significant. The benefit of splitting ETM+ band 4
into two bands 15 the reduction in the contribution of the water absorption feature in
ETM + band 4.

The BPC-FS classification method utilized fewer bands that were highly
correlated than a standard classification that typically uses all bands. This
improves parameter estimates, particularly for pairs of classes with small amounts
of training data. While this is not as critical for analvsis of multispectral data, it 15
extremely important for classification of hyperspectral data. The second phase of
this ongoing study involves analvsis of Hyperion data acquired simultaneously to
ALI on the EO-1 platform. The BPC-FS method provides a useful framework that
can be used with various feature selection and extraction methods, which are
required to reduce the dimensionality of the hyperspectral input. The pairwise
approach also provides a foundation for knowledge transfer that will be investigated
as the classifier 1s utilized bevond the area on which it was originally trained.
Finally, the simpler individual classifiers utilized by the BPC-FS often provide
insight into class-dependent physiological phenomena. This aspect 15 currently being
studied in terms of the resultant class dependent features that were selected by the
BPC-FS.
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