
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

18 | P a g e

http://ijacsa.thesai.org/

Analyzing the Load Balance of Term-based

Partitioning

Ahmad Abusukhon

Faculty of Science & IT

Al-Zaytoonah Private University of Jordan

Amman Jordan

ce4aab@student.sunderland.ac.uk

Mohammad Talib

Department of Computer Science

University of Botswana

Private Bag UB 00704, Gaborone, BOTSWANA

 talib@mopipi.ub.bw

Abstract— In parallel (IR) systems, where a large-scale collection

is indexed and searched, the query response time is limited by the

time of the slowest node in the system. Thus distributing the load

equally across the nodes is very important issue. Mainly there are

two methods for collection indexing, namely document-based and

term-based indexing. In term-based partitioning, the terms of the

global index of a large-scale data collection are distributed or

partitioned equally among nodes, and then a given query is

divided into sub-queries and each sub-query is then directed to

the relevant node. This provides high query throughput and

concurrency but poor parallelism and load balance. In this

paper, we introduce new methods for terms partitioning and

then we compare the results from our methods with the results

from the previous work with respect to load balance and

query response time.

Keywords- Term-partitioning schemes, Term-frequency
partitioning, Term-lengthpartitioning, Node utilization, Load
balance

I. INTRODUCTION

The number of pages (documents) available online is
increasing rapidly. Gulli and Signorini [17] estimated the
current size of the web. They mentioned that Google claims to
index more than 8 billion pages. They estimated the indexable
web to be at least 11.5 billion pages. Beside the huge
document collection, we have a large number of information
requests (queries) that are submitted by clients. Sullivan [18]
reported that the number of searches per day performed by
Google is 250 million. In order to the users to effectively
retrieve documents that are relevant to their needs, the IR
systems must provide effective, efficient, and concurrent
access to large document collections. Thus, the first step in
developing information retrieval system is to decide on what
access method should be used in order to access large-scale
collection efficiently. In IR systems the indices of documents
must be built to perform timely information retrieval. The most
known structures for building the index of large-scale
collection are inverted files and signature files. The most
common and most efficient structure for building the index
of large-scale collection is the inverted file [1,2].

Zobel[3] compared inverted files and signature files with
respect to query responsetime and space requirements. They

found that inverted files evaluate queries in less time than
signature files and need less space, thus for efficiency
reasons, we use the inverted files in our research.

In general, inverted files consist of vocabulary and a
set of inverted lists. The vocabulary contains all unique
terms in the whole data collection; while the inverted lists
composed of a list of pointers and each pointer consists of
document identifier and term frequency. The term frequency
in each pair represents how many times term i appears in
document j (Fi,j). Let’s suppose that the inverted list for term
“world” is:

World 2:5, 6:3, 12:1, 15:1

This means that term world appears five times in
document 2, three times in document 6, one time in
document 12, and one time in document 15. The numbers
2,6, 12, and 15 are called the document identifiers while the
numbers 5, 3, 1, and 1 are called the term frequencies.

In parallel IR system when term partitioning scheme is
used all unique terms in the data collection and their
inverted lists reside on a single node called the broker. The
broker distributes all terms and their inverted lists across
nodes using different approaches. The terms, for instance,
may be distributed in round robin fashion. In this case the
broker iterates over all terms in the inverted file, and
distributes them sequentially across nodes. The aim of
round robin partitioning scheme is to balance the load over
the nodes by storing nearly equal number of terms on all
nodes.

Moffat[4] showed that distributing the terms of the term-
based index in round robin fashion results in load
imbalance especially when there are heavy loaded terms.
Because of this the round robin partitioning scheme does
not take care of those terms to be distributed equally across
nodes.

Xi[5] proposed the hybrid partitioning scheme in order
to achieve load balance. In hybrid partitioning scheme the
inverted lists of the term-based index are split into chunks
then chunks are distributed across nodes. They investigated
partitioning the inverted list into different sizes and they

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

19 | P a g e

http://ijacsa.thesai.org/

concluded that hybrid partitioning scheme achieves better
load balance than the other schemes (document-based and
term-based partitioning) when the chunk size is small (1024
posting). But when the chunk size is large the hybrid
partitioning is worse than the document partitioning. In this
paper, we propose two methods for term partitioning scheme -
term length partitioning and term frequency partitioning.

Abusukhon et al. [13, 14, 16] proposed improving the
load balance of hybrid partitioning using hybrid queries. In
their work, they divided the nodes into clusters then the
inverted lists of all terms were divided into a number of
chunks, the chunks of a given term that start with a certain
letter were distributed equally among the nodes of a certain
cluster. A hybrid query was generated from a set of queries
and then this query was divided into streams with respect to
the first letter of each term. Each stream was directed to the
relevant cluster.

II. RELATED WORK

Inverted files can be partitioned by different approaches.
Different approaches of data partitioning leads to different
load balance and different query response time as
described by Abusukhon et al. [15]. In this section we shed
light on various strategies for term-partitioning schemes as
described in the previous work.

Cambazoglu[6] demonstrated two main types for
inverted file partitioning - term-based partitioning and
document-based partitioning. In term-based partitioning all
unique terms in the data collection and their inverted lists
reside on a single node. In document-based partitioning the
data collection is divided into sub-collections, sub-
collections are distributed across nodes, and then each node
builds its own index.

Jeong [7] proposed two methods for load balancing
when using term-based partitioning scheme. In the first
method they proposed to split the inverted list into equal
parts and then distribute those parts across nodes instead of
distributing equal number of terms across nodes in order to
achieve better load balance.

In the second method they proposed to partition the
inverted lists based on the access frequency of terms in the
user query and the inverted list size for each term appears in
the query. They studied the performance of the above
schemes by simulation under different workloads.

Marin and Costa [19] stated that load balance is sensitive
to queries that include high frequency terms that refer to
inverted lists of different sizes.

Moffat[4] examined different methods to balance the load
for term-distributed parallel architecture and proposed
different techniques in order to reduce the net querying
costs. They defined the workload as follows:

Wt = Qt * St

Where Wt is the workload caused by the term t that appears
in a query batch Qt and has an inverted list of length equals St
bytes. The workload for a given node is the sum of Wt of the
terms distributed over that node. In one of their experiments the
terms of the queries were distributed over the nodes randomly.
The simulation result showed that some nodes were heavy-
loaded because they retrieved very large size inverted lists;
therefore, some of the nodes in the system were half-idle and
affect the system throughput. In order to improve the load
balance they proposed distributing the inverted lists equally
among the nodes based on the number of pointers P in each
inverted list.

Jeong and Omiecinski [20] concluded that partitioning by
term resulted in load imbalance because some terms were
more frequently requested in a query. Thus, nodes where these
terms associated with their inverted lists were stored would be
heavily utilized.

Xi[5] proposed a hybrid partitioning scheme in order to
distribute terms across the nodes. Hybrid partitioning scheme
avoids storing terms with long posting lists on one node
instead of the inverted list of a given term is split into a
number of equal size chunks and then distributed randomly
across the nodes. They measured the load balance and
concluded that the hybrid-partitioning scheme outperforms
other schemes when the chunk size is small. In this paper, we
propose Term Length partitioning and Term Frequency
partitioning for improving the load balance of term-based
partitioning.

III. SYSTEM ARCHITECTURE

Fig.1 shows our system architecture. It consists of six
nodes and one broker. All nodes are connected to the broker
via Ethernet switch.

Figure 1. Distributed IR Architecture

The machine specifications for five nodes are: CPU
2.80Ghz RAM 256MB whereas the specification for the last
and the broker are: CPU 3.00Ghz, RAM 512MB. All
machines are running in Windows XP environment.

IV. RESEARCH METHODOLOGY

We carried-out a set of real experiments using six nodes
and one broker as shown in Fig. 1. In all of our experiments
we use the data collection WT10G from TREC-9 and 10,000

Node1

Query

100Mbps Ethernet switch

Node 6

Broke

r

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

20 | P a g e

http://ijacsa.thesai.org/

queries extracted from the start of Excite-97 log file. The
chronology of our research methodology is traced below:

1. We build the global index (called the term-based
partitioning) in the following way:

a. Broker sends the documents across nodes in round robin
fashion.

b. Each node when receiving its document performs these
activities-

• Filters the document it receives from stop words (the stop
word list consists of 30 words), HTML tags, and all
noncharacters and non-digit terms.

• Accumulates the posing lists in main memory until a given
memory threshold is reached. At this point the data stored in
memory is flushed to on-disk file [8,9, 2,11]. This process is
repeated until all documents in the data collection are
indexed.

• Merge all on-disk files together into one on-disk file called
the local index or the document-based partitioning.

c. Finally, the broker collects all local indices from all
nodes and merges them together in order to produce the
global index.

2. We partition the terms of the global index across
nodes using four different approaches, viz., round robin
partitioning, partitioning based on the length of the inverted
list, term length partitioning and term frequency partitioning.

Next, we demonstrate the above approaches and then run a
set of real experiments in order to compare them with respect
to the node utilization.

A. Round Robin Partitioning

In round robin partitioning, we distribute the terms of the
global index across nodes. If we have three nodes and four
terms A, B, C, and D associated with their posting lists then
term A may reside on node 1, term B on node 2, term C on
node 3, and term D on node 1, and so on [10].

B. Term Partitioning Based on the Length of the Inverted

List

In this method of partitioning, we pass over the terms of
the global index twice. In the first pass, we calculate the
length of the inverted list L for each term T, store T and L in
a look up file PL after sorting them on L in ascending order.
In the second pass, we distribute the terms and the inverted
lists of the global index across the nodes using the PL in
round robin fashion in the follow order:

1. Read one record (L, T) from PL

2. Search T in the global index and retrieve its inverted list

3. Send T and its inverted list to a certain node in round robin
fashion.

4. If no more records then EXIT else go to step1.

We use the above algorithm in order to guarantee that
all inverted lists of the same length reside on all nodes
equally. Fig. 2 shows an example of the PL file.

Figure 2. Sorted look up file (PL)

C. Term Length Partitioning

Case[12] described Zipf’s principle of least effort. He
stated that:

“According to Zipf’s law (1949) each individual will
adopt a course of action that will involve the expenditure of
the probable least average of his work, in other words, the
least efforts”

He wrote that the statistical distribution of words in the
text of James Joyce’s Ulysses follows the type of pattern on
which Zipf based his theory. The 10th most common word
appears 2,653 times; the 100th most common word, 265
times; and the 1,000th, 26 times. This relation is called
“harmonic distribution”. He stated that humans try to use
short, common words whenever they can rather than longer
words that take more effort. This is the first motivation for
the term-length partitioning. In this section, we propose to
partition the terms of the global index associated with their
inverted lists with respect to the term length (in letters).

Our research hypothesis for term length partitioning is
based on statistical information collected from the query log
file Excite-97. This information is stored into a look up file
as it is shown in Fig.2. In Fig. 3, we see that the term
lengths are not distributed equally in Excite-97 (i.e. have very
skewed distribution). For example, the number of terms of
length 5 equals 360093 while the number of terms of length
11 equals 59927. The total number of terms in Excite-97 is
2235620. Thus the percentage of the terms of length 5 to
the total number of terms =360093 / 2235620 = 0.16%
while the percentage of terms of length 11 = 59927 /
2235620 = 0.03%. This is the second motivation for the
term-length partitioning. When users submitted their
queries, the queries contain terms of different length.
Suppose that the majority of those terms are of length 4 and 5
as it is shown in Fig. 3. In addition, we partitioned the terms
of the global index in round robin fashion and all terms of
length 4 and 5 resided on one or two nodes. This way of
partitioning will result in load imbalance because most of the
work will be carried out by one or two nodes only while
other nodes doing less work or may be idle. Thus our

Inverted List Length Term

100 a

100 b

. .

. .

1200 z

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

21 | P a g e

http://ijacsa.thesai.org/

hypothesis is that all terms of the same length must be
distributed equally a cross nodes in order to achieve more
load balance.

Our partitioning method requires passing over all terms
of the global index twice. In the first pass, we calculate the
length WL of each term T, store WL and T in a look up file
PL after sorting them on WL in ascending order. In the

second pass, we distribute the terms and the inverted lists of
the global index across nodes using the PL in round robin
fashion in the following order:

1. Read one record (WL, T) from PL

2. Search T in the global index and retrieve its inverted list

3. Send T and its inverted list to a certain node in round robin
fashion.

4. If no more records then EXIT else go to step1.

We use the above algorithm in order to guarantee that
all terms of the same length reside on all nodes equally.

Our proposed partitioning algorithm differ from round
robin partitioning in that it distributes the terms across the
nodes equally, and it also guarantee that all nodes get the
same number of terms of the same length. The round robin
algorithm distributes the terms across the nodes equally
regardless the term length. Therefore, we expect that the
term length-partitioning scheme achieves better load balance
than the round robin partitioning. To the best of our
knowledge, no previous work investigated partitioning the
global index based on the term length, or measured the
nodes utilization when using the term length partitioning.

Figure 3. Term length distribution for Excite-97

D. Term Frequency Partitioning

Baeza[1] demonstrated Zipf’s law (Fig.4), which is used

to capture the distribution of i-th most frequent word is 1/ir
times that the most frequent word” (r between 1.5 and 2.0),
thus the frequency of any word is inversely proportional to
its rank (i.e. i-th position) in the frequency table. They

showed that the distribution of sorted frequencies
(decreasing order) is very skewed (i.e. there were a few
hundred words which take up 50% of the text) thus words
that are too frequent like stop words can be ignored.

In Fig. 4, graph (A) shows the skewed distribution of the
sorted frequencies while graph (B) is the same as graph (A)
but we divided the curve into six clusters (A, B, C, D, E, F)
after ignoring the stop words. Cluster (A) has the most
frequent terms, then cluster B, then C, and so on. In addition,
in graph (B) we assume that most or all of the query terms
appear in cluster (A), that all or most of the terms in cluster
(A) may not reside on all nodes but on one or two nodes in the
system. In this case, we may have one or two nodes busy
answering the query terms while other nodes are idle, and thus
cause the load imbalance.

 Figure 4. Zipf’s Law

Our hypothesis is that if we filter the data collection from
stop words (words like the, in, on, …, etc), then the terms
with high total frequency (for example the terms in cluster
A) are more likely to appear in the user query (i.e. have
higher probability to appear in the user query) than the
terms with low total frequency. Thus, the terms with high
frequency must be distributed equally across the nodes in
order to achieve more load balance. Here we propose to
partition the terms of the global index with respect to the
total term frequency calculated from their inverted lists. To
make it clear what we mean by term frequency, we
demonstrate the following example: Let’s suppose we have
two terms (A, B) associated with their inverted lists as it is
shown in table 1.

TABLE I. INVERTED LISTS

term Inverted list

A 1:3, 4:1, 6:2, 9:5, 12:5, 13:2, 15:3

B 2:1, 4:1, 7:2, 9:2, 11:1, 12:1

Then, the total frequency F for each term is calculated as
follows:

 FA = 3+1+2+5+5+2+3 = 21

 FB = 1+1+2+2+1+1= 8

Term length distribution in Excite-97

0
50000

100000
150000
200000
250000
300000
350000
400000

L
e

n
g

th
(1

)

L
e

n
g

th
(3

)

L
e

n
g

th
(5

)

L
e

n
g

th
(7

)

L
e

n
g

th
(9

)

L
e

n
g

th
(1

1
)

L
e

n
g

th
(1

3
)

L
e

n
g

th
(1

5
)

L
e

n
g

th
(1

7
)

L
e

n
g

th
(1

9
)

L
e

n
g

th
(2

1
)

Length

N
u

m
b

e
r

o
f

te
rm

s
 f

o
r

s
p

e
c

if
ic

le
n

g
th

Words

Frequency

Words

Frequency

A

B
C

D
E

F Query

terms

(A) (B)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

22 | P a g e

http://ijacsa.thesai.org/

Based on the above calculations, the total frequency of
term A is higher than the total frequency of term B and thus
we expect that term A has higher probability to appear in the
user query than term B. We expect that the load imbalance
may occur, if the majority of the terms with higher total
frequency reside on one or two nodes, as a result of
performing some techniques like round robin partitioning, in
this case, most of the user query terms are answered by one
or two nodes and thus cause the load imbalance. In the next
section, we show how to calculate the probability of a given
term to appear in the user query terms.

1) Calculate the Term Probability
Suppose that we have the document collection Ω where:

 Ω = {D0, D1, D2, …, Dn}

Let T = {t0, t1, t2, … , tn} be the set of terms appears in any
document Di in any combination. Let the term tj occurs m
times in Di , then we assume that the probability (Pt ji) that the
term tj appears in the query terms is equivalent to how many
times it occurs in the whole data collection.

n

i

ijtj mp
1

, (1)

Where, n is the total number of documents in the data
collection and mj,i is how many times the term j appears in
document i.

For example, suppose we have a data collection contains 4
documents (d1, d2, d3, and d4) and three terms (t1, t2, and t3)
and that t1 appears in these documents (5, 10, 2, 3) times, t2
appears (1, 3, 0, 1) and t3 appears (1, 1, 1, 2). We assume that
the probability of term t1 to appear in the query terms is 20, t2
is 5 and t3 is 5.

To normalize the value of Ptj, we divided it by the
summation of the total frequencies of all distinct terms in the
data collection, i.e.

n

k

s

l

kl

n

i

ij

tj

m

m

p

1 1

,

1

,

Where, n is the total number of documents in the data
collection and s is total number of distinct terms in the data
collection. In the above example, after normalization, the
probability of term t1 = 20 / 30 (i.e. 0.7) while the probability
of term t2 = 5/30 (i.e. 0.17).

2) Term Distribution Based on the Total Term Frequency
We pass over all terms of the global index twice. In the

first pass, we calculate the total frequency F for each term T
using equation 1 then store F and T in a look up file PL after
sorting them on F in ascending order.

In the second pass, we distribute the terms and the
inverted lists of the global index using the PL in round robin
fashion in the following order:

1. Read one record (F, T) from PL

2. Search T in the global index and retrieve its inverted list

3. Send T and its inverted list to a certain node in round robin
fashion

4. If no more records then EXIT else go to step1.

The above algorithm is used in order to guarantee that
all terms of the same total frequency F are distributed across
all nodes equally.

To the best of our knowledge, no previous work
investigated partitioning the global index based on the total
term frequency or measured the nodes utilization when using
the term frequency partitioning.

V. EXPERIMENTS

In this research, we carried out a set of real experiments
using the system architecture shown in Fig. 1. We used the
data collection WT10G from TREC-9 in order to build the
global index and 10,000 queries extracted from the start of the
Excite-97 log file to measure the node utilization for each
node.

Xi[5] defined the node utilization as – “the total amount of
time the node is serving requests from the IR server divided by
the total amount of time of the entire experiment”.

We distributed the terms of the global index using the four
approaches mentioned in sections A, B, C, and D. We carried
out 10,000 queries, each query is sent across all nodes. Each
node retrieves and sends the inverted lists of the query terms
to the broker for evaluation. We considered the time the node
serving the query St to be the time required to retrieve all
inverted lists of query terms and send them to the broker. We
considered the node to be idle if the query term does not exist
on its hard disk in that case, the searching time is excluded
from St. The total time for each experiment is shown in table
VII. For each partitioning scheme mentioned in sections A, B,
C, and D, we calculated ∆U:

∆U = Maximum node utilization – Minimum node utilization

 = MaxU – MinU (3)

Tables II, III, IV, and V show the time taken by each node
to serve 10,000 queries sent by the broker as well as the node
utilization. We calculated the node utilization by dividing the
time the node serving queries by the total time of the
experiment. For example, the node utilization for node 1
(Table II) is calculated as follows:

Node utilization = 598195 / 3349515 = 0.1785.

This calculation step is carried out for all tables (II, III, IV,
and V). Next, we produce table VI from the above tables. For
each table we got the minimum and the maximum node

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

23 | P a g e

http://ijacsa.thesai.org/

utilization (MinU, MaxU). For table II, MinU = 0.1104 and
MaxU= 0.1947 then we calculate ∆U:

 ∆U = MaxU – MinU

 = 0.1947 – 0.1104

 = 0.0843

We use table VI to produce Fig. 5 and we calculate the
average query response time for each of the above partitioning
algorithms by dividing the total time of the experiment by the
total number of the executed queries. For round robin
partitioning scheme:

The average query response time = 3349515 / 10000

 = 334.95 milliseconds

Table VIII and Fig. 6, show the partitioning methods and the
average query response time.

Figure 5. Comparison between four approaches for term partitioning scheme

(Round robin, Term Length, inverted List Length, and Term frequency) with

respect to ∆U

TABLE II. NODE UTILIZATION FOR ROUND ROBIN PARTITIONING

Node #

Time serving

queries

(milliseconds) Node utilization

1 598195 0.1785

2 541421 0.1616

3 369798 0.1104

4 652215 0.1947

5 628682 0.1876

6 604870 0.1805

TABLE III. NODE UTILIZATION FOR PARTITIONING BASED ON THE

LENGTH OF INVERTED LIST.

Node #

Time serving

queries

(milliseconds)

Node

utilization

1 667148 0.2046

2 596106 0.1828

3 640117 0.1963

4 699275 0.2145

5 647914 0.1987

6 581225 0.1782

TABLE IV. NODE UTILIZATION FOR PARTITIONING BASED ON THE TOTAL

TERM FREQUENCY

Node #

Time serving queries

(milliseconds) Node utilization

1 559151 0.1692

2 640726 0.1939

3 590804 0.1788

4 594265 0.1799

5 667375 0.202

6 711796 0.2154

TABLE V. NODE UTILIZATION FOR PARTITIONING BASED ON TERM

LENGTH

Node #

Time serving queries

(milliseconds) Node utilization

1 596510 0.1690

2 535703 0.1518

3 689623 0.1954

4 625451 0.1772

5 629086 0.1783

6 618969 0.1754

TABLE VI. ∆ NODE UTILIZATION

Term Partitioning

Scheme

∆ Node Utilization

(Max - Min)

Round Robin 0.0843

Term Length 0.0363

Inverted List Length 0.0436

Term Frequency 0.0462

TABLE VII. TOTAL TIME OF EXPERIMENTS

Term partitioning method Total time of experiment

(milliseconds)

Round Robin 3349515

Length of inverted list 3259879

Term frequency 3303175

Term length 3528047

TABLE VIII. AVERAGE QUERY RESPONSE TIME (MILLISECONDS)

Partitioning Method Average Query Response

Time (milliseconds)

Length of inverted list 325.9879

Nod Utilization For Term Partitoning

Running 10000 Queries

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Round

Robin

Term

Length

Inverted List

Length

Term

Frequency

∆
 N

o
d

e
 U

ti
li

z
a
ti

o
n

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

24 | P a g e

http://ijacsa.thesai.org/

Round Robin 334.9515

Term frequency 330.3175

Term length 352.8047

Figure 6. Average query response time

VI. CONCLUSION AND FUTURE WORK

In this paper, we carried out a set of real experiments using
our parallel IR system in order to improve the load balance for
term partitioning scheme. We proposed to partition the terms
of the global index based on term length and the total term
frequency extracted from the inverted lists.

We compared our proposed methods with round robin
partitioning scheme and the partitioning scheme based on the
length of the inverted list. Our results showed that the term
length-partitioning scheme performed slightly better than other
schemes with respect to node utilization (Table VI). On the
other hand, partitioning terms based on the length of the
inverted list achieved slightly less average query response time
than other schemes (Table VIII).

ACKNOWLEDGMENT

The authors would like to thank Al-Zaytoonah University
for their support.

REFERENCES

[1] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM
Press, Addison-Wesley, New York (1999)

[2] Zobel, J.,Moffat, A.: Inverted Files for Text Search Engines, ACM
Computing Surveys (CSUR) (2006)

[3] Zobel, J.,Moffat, A., Ramamohanarao, k.: Inverted Files Versus
Signature Files for Text Indexing, ACM Transactions on Database
systems, 453-490 (1998)

[4] Moffat, A.,Webber, W.,Zobel ,J.: Load Balancing for Term-Distributed
Parallel Retrieval, The 29th annual international ACM SIGIR
conference on Research and development in information, 348-355.
ACM, New York (2006)

[5] Xi, W., Somil, O., Luo, M., and Fox, E.: Hybrid partition inverted files
for large-scale digital libraries.In Proc. Digital Library: IT Opportunities
and Challenges in the New Millennium, Beijing, China, Beijing Library
Press (2002)

[6] Cambazoglu, B., Catal, A., Aykanat, C.: Effect of Inverted Index
Partitioning Schemes on Performance of Query Processing in Parallel

Text Retrieval Systems. A. Levi et al. (Eds.): ISCIS 2006, LNCS,
4263(6), 717–725. Springer, Heidelberg (2006)

[7] Jeong, B.S., Omiecinski, E.: Inverted File Partitioning Schemes in
Multiple Disk Systems, IEEE, Transactions on Parallel and Distributed
Systems, 6(2), 142-153. IEEE press, Piscataway, NJ, USA (1995)

[8] Heinz, S., Zobel, J.: Efficient Single-Pass Index Construction for Text
Databases. Journal of the American Society for Information Science and
Technology, 54(8), 713-729 (2003)

[9] Jaruskulchai, C., Kruengkrai,C.: Building Inverted Files Through
Efficient Dynamic Hashing (2002)

[10] Badue, C., Baeza-Yates, R., Ribeiro-Neto, B., Ziviani, N.: Distributed
Query Processing Using Partitioned Inverted Files, 10-20 (2001)

[11] Lester, N., Moffat, A., Zobel, J.: Fast OnLine Index Construction by
Geometric Partitioning, CIKM'05, October 31 and November 5,
Proceedings of the 14th ACM international conference on Information
and knowledge management , Bremen, Germany, 776-783 ACM (2005)

[12] Case, D. Looking for Information: A survey of research on Information
Seeking, Needs, and Behavior. USA: Elsevier Science. pp:140-141
(2002)

[13] Abusukhon, A., Talib, M. and Oakes, M.P. Improving the Load Balance
for Hybrid Partitioning Scheme by Directing Hybrid Queries. In:
Burkhart, H. (Eds.). Proceedings of the IASTED International
Conference on Parallel and Distributed Computing and Networks as
part of the 26th IASTED International Multi-Conference on APPLIED
INFORMATICS. Innsbruck, Austria 12-14 February 2008, pp. 238-244.
ACTA press: USA. (2008a).

[14] Abusukhon, A. and Oakes, M.P. An Investigation into Query
Throughput and Load Balance Using Grid IR. In Proceedings of the 2nd
BCS- IRSG Symposium on Future Directions in Information Access
FDIA 2008. BCS London Office, UK, 22nd September 2008, pp. 38-44.
eWic: UK. (2008b)

[15] Abusukhon, A., Oakes, M. Talib, M. and Abdalla, A. Comparison
Between Document-based, Termbased and Hybrid Partitioning. In
Snasel,V. et al. (Eds.), Proceedings of the First IEEE
InternationalConference on the Application of Digital Information and
Web Technologies. Ostrava, Czech Republic, 4-6 August, pp. 90-95.
IEEE, (2008c)

[16] Abusukhon, A. and Talib, M. Improving Load Balance and Query
Throughput of Distributed IR Systems. International Journal of
Computing and ICT Research (IJCIR), 4(1), pp 20-29, (2010)

[17] Gulli, A. and Signorini, A., The indexable web is more than 11.5 billion
pages. The 14th international conference on World Wide Web ACM,
New York, USA, pp 902-903, (2005).

[18] Sullivan,D., Searches per day. Search Engine.
Watch,http://searchenginewatch.com/reports/article.php/2156461,(2003)

[19] Marin, M., and Costa, G.V. High-Performance Distributed Inverted
Files. In Proceedings of the 16th ACM Conference on Information and
Knowledge Management CIKM’07. Lisbon, Portugal, 6-9 November
2007, pp. 935-938, ACM: New York, USA, (2007).

[20] Jeong, B.S., and Omiecinski, E. Inverted File Partitioning Schemes in
Multiple Disk Systems. IEEE Transactions on Parallel and Distributed
Systems, 6(2), pp. 142-153. IEEE Press, USA. (1995).

AUTHORS PROFILE

Dr. Ahmad Abusukhon got his Bachelor degree in Computer Science from
Mu'tah University in 1990, his M.Sc degree in Computer Science from the
University of Jordan in 2001 and he got his PhD degree in Computer Science
from the University of Sunderland in 2009. He is now working as assistant
Prof. at Al-Zaytonnah University. Dr. Abusukhon is intersted in Computer
networks, Distributed systems, and Distributed computing.

Professor M. Talib has, presently, been associated with the computer

science department of the university of Botswana and has also been an adjunct

professor at the Touro University International (TUI), USA. He has worked at

a number of universities all across the globe in different capacities besides

India where he remained the Head of the Department of Computer Scienc. He

Average Query Response Time for

10,000 Queries

310

315
320

325

330
335

340

345
350

355

Length of

inverted list

Round

Robin

Term

frequency

Term length

A
v
e
ra

g
e
 Q

u
e
ry

 R
e
s
p

o
n

s
e
 T

im
e

(M
il

li
s
e
c
o

n
d

s
)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.1, January 2011

25 | P a g e

http://ijacsa.thesai.org/

has an excellent industrial relevance and has worked as Software Engineer at

the silicon valley in California for a significant period of time. He has been a

Consultant for several software development companies and handled various

small and big projects all across the world. He was conferred upon a degree of

the Doctor of Philosophy (Ph.D.) in computer science with specialization in

computer vision from the prestigious University of Lucknow in India with

Certificate of Honor. Besides PhD, he is also flanked by an M.S. in computer

science, MSc in statistics and PG Diploma in Computing. He has supervised

over a dozen Master and four PhD students in different areas of Computer

Science, Business and IT. His research areas include Bio informatics,

Computer Vision, and Robotics. Presently, he is working on a two way

interactive video communication through the virtual screen with the essence

of smell. He has over sixty five research papers published in different world

class journals and conferences besides a book. He is also credited with over

300 publications including (under)graduate project reports, thesis, extension

articles, study guides, edited research papers, books, etc. besides a minimum

of 50 Industrial training supervision reports all across the world. He has

chaired and remained member of various Academic Councils, Board of

Studies, Academic and Advisory Boards, Examination Committees,

Moderation and Evaluation Committees worldwide. He is the Member of the

Editorial Board of about a dozen International Journals. He has also been

associated with a number of international computer societies, associations,

forums etc. in various capacities.

